Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960507407> ?p ?o ?g. }
- W2960507407 endingPage "34" @default.
- W2960507407 startingPage "21" @default.
- W2960507407 abstract "In last three decades, fractal geometry (FG) has been the focus of attention by several researchers owing to it exhibiting excellent properties and robust application with respect to current research scenario. Fractal Dimension (FD) plays a vital role in order to analyse complex objects that are found in nature which was failed to be analysed by Euclidian geometry. FD is an imperative aspect of FG to provide indicative application in different areas of research including image processing, pattern recognition, computer graphics and many more. Analysis of an image is an important technique of image processing to describe image features like texture, roughness, smoothness etc., and is only possible through FG. Due to this reason many more technique were evolved to estimate the fractal dimension. The main aim of this article is to give a comprehensive review, which summarizes recent research progress on analysis of surface roughness and an overview of different concepts, and the way they work and their benefits and their limitations, and also we deliver how the different concepts taken into consideration to estimate FD depend upon different algorithms. This article also discusses several factors affecting FD estimation; types of similarity property, spatial resolution, sampling process, region of interest, spectral band and box-height criteria are discussed. Furthermore, we have tried to present the application area oriented versus core area of FG. There are several contradictory results found in many kinds of literature on the influence of different parameters while conducting FD analysis. Mainly it has been observed that the FD estimation will be affected by texture property, gray scale range, color property, color distance and the other parameters which are already mentioned. Hence this article will be beneficial for researchers in order to select precise FD estimation. However different algorithms lead to different results even with the use of the same kind of database images, so selection of appropriate technique is a major challenge for accurate estimation. Therefore an in-depth and proper understanding is required in order to choose the appropriate algorithm and also a robust algorithm for analysing roughness in better and precise way needs to be developed. • Fractal dimension plays vital role for analysing complex objects found in nature but failed to analyse by Euclidian geometry. • This article gives a comprehensive review, which summarizes recent research progress on analysis of surface roughness. • The detailed overview of different concept, and the way they work and their benefits and their limitations are presented. • We also deliver how the different influence factors affects in FD estimation in different algorithms. • We have also presented the application area verses core area of different fractal dimensions algorithm." @default.
- W2960507407 created "2019-07-23" @default.
- W2960507407 creator A5066972805 @default.
- W2960507407 creator A5074607700 @default.
- W2960507407 creator A5090967969 @default.
- W2960507407 date "2019-09-01" @default.
- W2960507407 modified "2023-10-02" @default.
- W2960507407 title "Analysing roughness of surface through fractal dimension: A review" @default.
- W2960507407 cites W141280092 @default.
- W2960507407 cites W1506586453 @default.
- W2960507407 cites W1583479762 @default.
- W2960507407 cites W1964814421 @default.
- W2960507407 cites W1965262908 @default.
- W2960507407 cites W1966414419 @default.
- W2960507407 cites W1967426304 @default.
- W2960507407 cites W1969004136 @default.
- W2960507407 cites W1969703576 @default.
- W2960507407 cites W1970624363 @default.
- W2960507407 cites W1976626285 @default.
- W2960507407 cites W1976758236 @default.
- W2960507407 cites W1977525095 @default.
- W2960507407 cites W1978189768 @default.
- W2960507407 cites W1978281139 @default.
- W2960507407 cites W1980690398 @default.
- W2960507407 cites W1982237443 @default.
- W2960507407 cites W1982840091 @default.
- W2960507407 cites W1984494245 @default.
- W2960507407 cites W1986817752 @default.
- W2960507407 cites W1986872133 @default.
- W2960507407 cites W1987089923 @default.
- W2960507407 cites W1987281415 @default.
- W2960507407 cites W1987547208 @default.
- W2960507407 cites W1988422489 @default.
- W2960507407 cites W1989890904 @default.
- W2960507407 cites W1992073205 @default.
- W2960507407 cites W1993650430 @default.
- W2960507407 cites W1994702766 @default.
- W2960507407 cites W1994744460 @default.
- W2960507407 cites W1996054047 @default.
- W2960507407 cites W1998686694 @default.
- W2960507407 cites W1999866833 @default.
- W2960507407 cites W2001897451 @default.
- W2960507407 cites W2001930659 @default.
- W2960507407 cites W2002478524 @default.
- W2960507407 cites W2002894757 @default.
- W2960507407 cites W2003587387 @default.
- W2960507407 cites W2011660455 @default.
- W2960507407 cites W2012403756 @default.
- W2960507407 cites W2013630111 @default.
- W2960507407 cites W2014440501 @default.
- W2960507407 cites W2016054723 @default.
- W2960507407 cites W2016993346 @default.
- W2960507407 cites W2018034957 @default.
- W2960507407 cites W2018403079 @default.
- W2960507407 cites W2019404738 @default.
- W2960507407 cites W2020068828 @default.
- W2960507407 cites W2020822045 @default.
- W2960507407 cites W2021213149 @default.
- W2960507407 cites W2021940526 @default.
- W2960507407 cites W2027537607 @default.
- W2960507407 cites W2028590017 @default.
- W2960507407 cites W2029747961 @default.
- W2960507407 cites W2030000901 @default.
- W2960507407 cites W2030065108 @default.
- W2960507407 cites W2030111984 @default.
- W2960507407 cites W2033728633 @default.
- W2960507407 cites W2035890732 @default.
- W2960507407 cites W2036374938 @default.
- W2960507407 cites W2036727341 @default.
- W2960507407 cites W2042139550 @default.
- W2960507407 cites W2044813956 @default.
- W2960507407 cites W2047577845 @default.
- W2960507407 cites W2049285243 @default.
- W2960507407 cites W2050480977 @default.
- W2960507407 cites W2051204549 @default.
- W2960507407 cites W2051771453 @default.
- W2960507407 cites W2056510083 @default.
- W2960507407 cites W2056830321 @default.
- W2960507407 cites W2057521511 @default.
- W2960507407 cites W2058359048 @default.
- W2960507407 cites W2059379568 @default.
- W2960507407 cites W2069082158 @default.
- W2960507407 cites W2069874918 @default.
- W2960507407 cites W2070791497 @default.
- W2960507407 cites W2072256707 @default.
- W2960507407 cites W2073065894 @default.
- W2960507407 cites W2073748076 @default.
- W2960507407 cites W2076627139 @default.
- W2960507407 cites W2080875842 @default.
- W2960507407 cites W2083674286 @default.
- W2960507407 cites W2085118563 @default.
- W2960507407 cites W2086897454 @default.
- W2960507407 cites W2089666804 @default.
- W2960507407 cites W2095597191 @default.
- W2960507407 cites W2096328930 @default.
- W2960507407 cites W2098368581 @default.
- W2960507407 cites W2105967432 @default.
- W2960507407 cites W2117221846 @default.