Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960559969> ?p ?o ?g. }
- W2960559969 endingPage "12" @default.
- W2960559969 startingPage "1" @default.
- W2960559969 abstract "Abstract The usage of deep learning models for tagging input data has increased over the past years because of their accuracy and high‐performance. A successful application is to score sleep stages. In this scenario, models are trained to predict the sleep stages of individuals. Although their predictive accuracy is high, there are still mis classifications that prevent doctors from properly diagnosing sleep‐related disorders. This paper presents a system that allows users to explore the output of deep learning models in a real‐life scenario to spot and analyze faulty predictions. These can be corrected by users to generate a sequence of sleep stages to be examined by doctors. Our approach addresses a real‐life scenario with absence of ground truth. It differs from others in that our goal is not to improve the model itself, but to correct the predictions it provides. We demonstrate that our approach is effective in identifying faulty predictions and helping users to fix them in the proposed use case." @default.
- W2960559969 created "2019-07-23" @default.
- W2960559969 creator A5010428903 @default.
- W2960559969 creator A5039489539 @default.
- W2960559969 creator A5051025031 @default.
- W2960559969 creator A5086392235 @default.
- W2960559969 date "2019-06-01" @default.
- W2960559969 modified "2023-10-15" @default.
- W2960559969 title "V‐Awake: A Visual Analytics Approach for Correcting Sleep Predictions from Deep Learning Models" @default.
- W2960559969 cites W1849277567 @default.
- W2960559969 cites W1895577753 @default.
- W2960559969 cites W1895989618 @default.
- W2960559969 cites W1931639407 @default.
- W2960559969 cites W1932469787 @default.
- W2960559969 cites W1995200202 @default.
- W2960559969 cites W2071128523 @default.
- W2960559969 cites W2133645177 @default.
- W2960559969 cites W2137406659 @default.
- W2960559969 cites W2144691514 @default.
- W2960559969 cites W2152825437 @default.
- W2960559969 cites W2158778629 @default.
- W2960559969 cites W2162800060 @default.
- W2960559969 cites W2164082066 @default.
- W2960559969 cites W2294798173 @default.
- W2960559969 cites W2295107390 @default.
- W2960559969 cites W2309584085 @default.
- W2960559969 cites W2312404985 @default.
- W2960559969 cites W2339885376 @default.
- W2960559969 cites W2343061342 @default.
- W2960559969 cites W2512274390 @default.
- W2960559969 cites W2512304460 @default.
- W2960559969 cites W2518775244 @default.
- W2960559969 cites W2604096629 @default.
- W2960559969 cites W2607223307 @default.
- W2960559969 cites W2751298778 @default.
- W2960559969 cites W2752194699 @default.
- W2960559969 cites W2752332392 @default.
- W2960559969 cites W2753713840 @default.
- W2960559969 cites W2776207810 @default.
- W2960559969 cites W2809596283 @default.
- W2960559969 cites W2962858109 @default.
- W2960559969 cites W2963123635 @default.
- W2960559969 cites W3023775830 @default.
- W2960559969 cites W3101609372 @default.
- W2960559969 cites W4298082496 @default.
- W2960559969 doi "https://doi.org/10.1111/cgf.13667" @default.
- W2960559969 hasPublicationYear "2019" @default.
- W2960559969 type Work @default.
- W2960559969 sameAs 2960559969 @default.
- W2960559969 citedByCount "14" @default.
- W2960559969 countsByYear W29605599692019 @default.
- W2960559969 countsByYear W29605599692020 @default.
- W2960559969 countsByYear W29605599692021 @default.
- W2960559969 countsByYear W29605599692022 @default.
- W2960559969 countsByYear W29605599692023 @default.
- W2960559969 crossrefType "journal-article" @default.
- W2960559969 hasAuthorship W2960559969A5010428903 @default.
- W2960559969 hasAuthorship W2960559969A5039489539 @default.
- W2960559969 hasAuthorship W2960559969A5051025031 @default.
- W2960559969 hasAuthorship W2960559969A5086392235 @default.
- W2960559969 hasBestOaLocation W29605599692 @default.
- W2960559969 hasConcept C108583219 @default.
- W2960559969 hasConcept C111919701 @default.
- W2960559969 hasConcept C119857082 @default.
- W2960559969 hasConcept C146849305 @default.
- W2960559969 hasConcept C154945302 @default.
- W2960559969 hasConcept C2522767166 @default.
- W2960559969 hasConcept C2775841894 @default.
- W2960559969 hasConcept C36464697 @default.
- W2960559969 hasConcept C41008148 @default.
- W2960559969 hasConcept C59732488 @default.
- W2960559969 hasConcept C79158427 @default.
- W2960559969 hasConceptScore W2960559969C108583219 @default.
- W2960559969 hasConceptScore W2960559969C111919701 @default.
- W2960559969 hasConceptScore W2960559969C119857082 @default.
- W2960559969 hasConceptScore W2960559969C146849305 @default.
- W2960559969 hasConceptScore W2960559969C154945302 @default.
- W2960559969 hasConceptScore W2960559969C2522767166 @default.
- W2960559969 hasConceptScore W2960559969C2775841894 @default.
- W2960559969 hasConceptScore W2960559969C36464697 @default.
- W2960559969 hasConceptScore W2960559969C41008148 @default.
- W2960559969 hasConceptScore W2960559969C59732488 @default.
- W2960559969 hasConceptScore W2960559969C79158427 @default.
- W2960559969 hasIssue "3" @default.
- W2960559969 hasLocation W29605599691 @default.
- W2960559969 hasLocation W29605599692 @default.
- W2960559969 hasLocation W29605599693 @default.
- W2960559969 hasOpenAccess W2960559969 @default.
- W2960559969 hasPrimaryLocation W29605599691 @default.
- W2960559969 hasRelatedWork W2064719069 @default.
- W2960559969 hasRelatedWork W2362367986 @default.
- W2960559969 hasRelatedWork W2400976661 @default.
- W2960559969 hasRelatedWork W2571228289 @default.
- W2960559969 hasRelatedWork W2937343495 @default.
- W2960559969 hasRelatedWork W3041760129 @default.
- W2960559969 hasRelatedWork W3048864202 @default.
- W2960559969 hasRelatedWork W348707231 @default.
- W2960559969 hasRelatedWork W4210310791 @default.