Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960751431> ?p ?o ?g. }
- W2960751431 endingPage "e0219369" @default.
- W2960751431 startingPage "e0219369" @default.
- W2960751431 abstract "Detection of pulmonary nodules is an important aspect of an automatic detection system. Incomputer-aided diagnosis (CAD) systems, the ability to detect pulmonary nodules is highly important, which plays an important role in the diagnosis and early treatment of lung cancer. Currently, the detection of pulmonary nodules depends mainly on doctor experience, which varies. This paper aims to address the challenge of pulmonary nodule detection more effectively.A method for detecting pulmonary nodules based on an improved neural network is presented in this paper. Nodules are clusters of tissue with a diameter of 3 mm to 30 mm in the pulmonary parenchyma. Because pulmonary nodules are similar to other lung structures and have a low density, false positive nodules often occur. Thus, our team proposed an improved convolutional neural network (CNN) framework to detect nodules. First, a nonsharpening mask is used to enhance the nodules in computed tomography (CT) images; then, CT images of 512×512 pixels are segmented into smaller images of 96×96 pixels. Second, in the 96×96 pixel images which contain or exclude pulmonary nodules, the plaques corresponding to positive and negative samples are segmented. Third, CT images segmented into 96×96 pixels are down-sampled to 64×64 and 32×32 size respectively. Fourth, an improved fusion neural network structure is constructed that consists of three three-dimensional convolutional neural networks, designated as CNN-1, CNN-2, and CNN-3, to detect false positive pulmonary nodules. The networks' input sizes are 32×32×32, 64×64×64, and 96×96×96 and include 5, 7, and 9 layers, respectively. Finally, we use the AdaBoost classifier to fuse the results of CNN-1, CNN-2, and CNN-3. We call this new neural network framework the Amalgamated-Convolutional Neural Network (A-CNN) and use it to detect pulmonary nodules.Our team trained A-CNN using the LUNA16 and Ali Tianchi datasets and evaluated its performance using the LUNA16 dataset. We discarded nodules less than 5mm in diameter. When the average number of false positives per scan was 0.125 and 0.25, the sensitivity of A-CNN reached as high as 81.7% and 85.1%, respectively." @default.
- W2960751431 created "2019-07-23" @default.
- W2960751431 creator A5011525207 @default.
- W2960751431 creator A5039221878 @default.
- W2960751431 creator A5077113287 @default.
- W2960751431 date "2019-07-12" @default.
- W2960751431 modified "2023-10-10" @default.
- W2960751431 title "A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning" @default.
- W2960751431 cites W1898227994 @default.
- W2960751431 cites W1983364832 @default.
- W2960751431 cites W1991324991 @default.
- W2960751431 cites W2017261342 @default.
- W2960751431 cites W2023522838 @default.
- W2960751431 cites W2083245210 @default.
- W2960751431 cites W2130293541 @default.
- W2960751431 cites W2234650031 @default.
- W2960751431 cites W2284539364 @default.
- W2960751431 cites W2322371438 @default.
- W2960751431 cites W2383601426 @default.
- W2960751431 cites W2394599079 @default.
- W2960751431 cites W2470491115 @default.
- W2960751431 cites W2524399695 @default.
- W2960751431 cites W2531088577 @default.
- W2960751431 cites W2534299759 @default.
- W2960751431 cites W2607969815 @default.
- W2960751431 cites W2613475099 @default.
- W2960751431 cites W2711636288 @default.
- W2960751431 cites W2763267787 @default.
- W2960751431 cites W2786072595 @default.
- W2960751431 cites W2790914505 @default.
- W2960751431 cites W2791104228 @default.
- W2960751431 cites W2800755727 @default.
- W2960751431 cites W2883167931 @default.
- W2960751431 cites W2887808321 @default.
- W2960751431 cites W2889686872 @default.
- W2960751431 cites W2950550088 @default.
- W2960751431 cites W2891229546 @default.
- W2960751431 doi "https://doi.org/10.1371/journal.pone.0219369" @default.
- W2960751431 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6625700" @default.
- W2960751431 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31299053" @default.
- W2960751431 hasPublicationYear "2019" @default.
- W2960751431 type Work @default.
- W2960751431 sameAs 2960751431 @default.
- W2960751431 citedByCount "30" @default.
- W2960751431 countsByYear W29607514312020 @default.
- W2960751431 countsByYear W29607514312021 @default.
- W2960751431 countsByYear W29607514312022 @default.
- W2960751431 countsByYear W29607514312023 @default.
- W2960751431 crossrefType "journal-article" @default.
- W2960751431 hasAuthorship W2960751431A5011525207 @default.
- W2960751431 hasAuthorship W2960751431A5039221878 @default.
- W2960751431 hasAuthorship W2960751431A5077113287 @default.
- W2960751431 hasBestOaLocation W29607514311 @default.
- W2960751431 hasConcept C108583219 @default.
- W2960751431 hasConcept C126322002 @default.
- W2960751431 hasConcept C126838900 @default.
- W2960751431 hasConcept C142724271 @default.
- W2960751431 hasConcept C151730666 @default.
- W2960751431 hasConcept C153180895 @default.
- W2960751431 hasConcept C154945302 @default.
- W2960751431 hasConcept C160633673 @default.
- W2960751431 hasConcept C2776256026 @default.
- W2960751431 hasConcept C2776731575 @default.
- W2960751431 hasConcept C2777714996 @default.
- W2960751431 hasConcept C41008148 @default.
- W2960751431 hasConcept C71924100 @default.
- W2960751431 hasConcept C81363708 @default.
- W2960751431 hasConcept C86803240 @default.
- W2960751431 hasConceptScore W2960751431C108583219 @default.
- W2960751431 hasConceptScore W2960751431C126322002 @default.
- W2960751431 hasConceptScore W2960751431C126838900 @default.
- W2960751431 hasConceptScore W2960751431C142724271 @default.
- W2960751431 hasConceptScore W2960751431C151730666 @default.
- W2960751431 hasConceptScore W2960751431C153180895 @default.
- W2960751431 hasConceptScore W2960751431C154945302 @default.
- W2960751431 hasConceptScore W2960751431C160633673 @default.
- W2960751431 hasConceptScore W2960751431C2776256026 @default.
- W2960751431 hasConceptScore W2960751431C2776731575 @default.
- W2960751431 hasConceptScore W2960751431C2777714996 @default.
- W2960751431 hasConceptScore W2960751431C41008148 @default.
- W2960751431 hasConceptScore W2960751431C71924100 @default.
- W2960751431 hasConceptScore W2960751431C81363708 @default.
- W2960751431 hasConceptScore W2960751431C86803240 @default.
- W2960751431 hasIssue "7" @default.
- W2960751431 hasLocation W29607514311 @default.
- W2960751431 hasLocation W29607514312 @default.
- W2960751431 hasLocation W29607514313 @default.
- W2960751431 hasLocation W29607514314 @default.
- W2960751431 hasOpenAccess W2960751431 @default.
- W2960751431 hasPrimaryLocation W29607514311 @default.
- W2960751431 hasRelatedWork W2085033728 @default.
- W2960751431 hasRelatedWork W3029198973 @default.
- W2960751431 hasRelatedWork W3133861977 @default.
- W2960751431 hasRelatedWork W3167935049 @default.
- W2960751431 hasRelatedWork W3193565141 @default.
- W2960751431 hasRelatedWork W4226493464 @default.
- W2960751431 hasRelatedWork W4285411112 @default.
- W2960751431 hasRelatedWork W4293226380 @default.