Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960920180> ?p ?o ?g. }
- W2960920180 endingPage "17287" @default.
- W2960920180 startingPage "17274" @default.
- W2960920180 abstract "We present four different computational methods for benchmarking the sampling and Rayleigh light scattering of atmospheric molecular clusters containing hydrogen bonds. For sampling the cluster configurational space we test both the semi-empirical PM6 and PM7 methods, as well as the density functional ωB97X-D with the 6-31G and 6-31++G(d,p) basis sets. As a model system we study clusters consisting of one hydrogen peroxide molecule (H2O2) and 1-5 water molecules. Hydrogen peroxide is an important constituent in the atmosphere where it acts as an oxidant. We find that all the sampling methods show conformational dissimilarities for the studied (H2O2)(H2O)1-5 clusters. Notably the results for the largest studied (H2O2)(H2O)5 cluster show that the sampling methods perform very differently in finding the same low Gibbs free energy conformers. We consider the magnitude of elastic Rayleigh light scattering of the clusters and how the scattering depends on the number of water molecules in the clusters. We observe that the final Boltzmann averaged Rayleigh scattering is independent of the sampling method and that the inexpensive semi-empirical methods can be applied without loss of accuracy. This implies that Rayleigh scattering is a robust property that does not depend significantly on cluster conformations, but instead mainly on the composition of the cluster." @default.
- W2960920180 created "2019-07-23" @default.
- W2960920180 creator A5003340681 @default.
- W2960920180 creator A5010730501 @default.
- W2960920180 creator A5019033081 @default.
- W2960920180 creator A5067042195 @default.
- W2960920180 creator A5077063321 @default.
- W2960920180 date "2019-01-01" @default.
- W2960920180 modified "2023-10-16" @default.
- W2960920180 title "Benchmarking sampling methodology for calculations of Rayleigh light scattering properties of atmospheric molecular clusters" @default.
- W2960920180 cites W1544276658 @default.
- W2960920180 cites W1906829895 @default.
- W2960920180 cites W1963968556 @default.
- W2960920180 cites W1969500858 @default.
- W2960920180 cites W1969695296 @default.
- W2960920180 cites W1976167963 @default.
- W2960920180 cites W1977044515 @default.
- W2960920180 cites W1977739492 @default.
- W2960920180 cites W1977805209 @default.
- W2960920180 cites W1988320097 @default.
- W2960920180 cites W1988636074 @default.
- W2960920180 cites W1995109133 @default.
- W2960920180 cites W1995291794 @default.
- W2960920180 cites W1998677802 @default.
- W2960920180 cites W2000084695 @default.
- W2960920180 cites W2002039008 @default.
- W2960920180 cites W2007645861 @default.
- W2960920180 cites W2008062856 @default.
- W2960920180 cites W2008092456 @default.
- W2960920180 cites W2012142231 @default.
- W2960920180 cites W2013350969 @default.
- W2960920180 cites W2017388934 @default.
- W2960920180 cites W2018354566 @default.
- W2960920180 cites W2019503868 @default.
- W2960920180 cites W2020333226 @default.
- W2960920180 cites W2025425208 @default.
- W2960920180 cites W2032084435 @default.
- W2960920180 cites W2034643367 @default.
- W2960920180 cites W2036514929 @default.
- W2960920180 cites W2037299305 @default.
- W2960920180 cites W2037570317 @default.
- W2960920180 cites W2037716287 @default.
- W2960920180 cites W2038012771 @default.
- W2960920180 cites W2038133833 @default.
- W2960920180 cites W2040771733 @default.
- W2960920180 cites W2045987602 @default.
- W2960920180 cites W2046482595 @default.
- W2960920180 cites W2048350629 @default.
- W2960920180 cites W2058363175 @default.
- W2960920180 cites W2061069301 @default.
- W2960920180 cites W2062737782 @default.
- W2960920180 cites W2066887109 @default.
- W2960920180 cites W2070804679 @default.
- W2960920180 cites W2072577387 @default.
- W2960920180 cites W2079916336 @default.
- W2960920180 cites W2081390244 @default.
- W2960920180 cites W2081555175 @default.
- W2960920180 cites W2087564805 @default.
- W2960920180 cites W2089211419 @default.
- W2960920180 cites W2094690852 @default.
- W2960920180 cites W2096557681 @default.
- W2960920180 cites W2097857598 @default.
- W2960920180 cites W2106332860 @default.
- W2960920180 cites W2108883829 @default.
- W2960920180 cites W2112850441 @default.
- W2960920180 cites W2116045705 @default.
- W2960920180 cites W2127131709 @default.
- W2960920180 cites W2132869159 @default.
- W2960920180 cites W2139983589 @default.
- W2960920180 cites W2146027507 @default.
- W2960920180 cites W2166342952 @default.
- W2960920180 cites W2167435874 @default.
- W2960920180 cites W2266814570 @default.
- W2960920180 cites W2331810677 @default.
- W2960920180 cites W2337616470 @default.
- W2960920180 cites W2402503711 @default.
- W2960920180 cites W2533171448 @default.
- W2960920180 cites W2568861045 @default.
- W2960920180 cites W2581163088 @default.
- W2960920180 cites W2790847493 @default.
- W2960920180 cites W2792730011 @default.
- W2960920180 cites W2800616416 @default.
- W2960920180 cites W2949843662 @default.
- W2960920180 cites W4236291385 @default.
- W2960920180 doi "https://doi.org/10.1039/c9cp02573a" @default.
- W2960920180 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31347631" @default.
- W2960920180 hasPublicationYear "2019" @default.
- W2960920180 type Work @default.
- W2960920180 sameAs 2960920180 @default.
- W2960920180 citedByCount "4" @default.
- W2960920180 countsByYear W29609201802019 @default.
- W2960920180 countsByYear W29609201802020 @default.
- W2960920180 countsByYear W29609201802022 @default.
- W2960920180 countsByYear W29609201802023 @default.
- W2960920180 crossrefType "journal-article" @default.
- W2960920180 hasAuthorship W2960920180A5003340681 @default.
- W2960920180 hasAuthorship W2960920180A5010730501 @default.
- W2960920180 hasAuthorship W2960920180A5019033081 @default.