Matches in SemOpenAlex for { <https://semopenalex.org/work/W2961011421> ?p ?o ?g. }
- W2961011421 endingPage "1409" @default.
- W2961011421 startingPage "1395" @default.
- W2961011421 abstract "Abstract As a renewable and clean energy, wind energy plays an important role in easing the increasingly serious energy crisis. However, due to the strong volatility and randomness of wind speed, large-scale integration of wind energy is limited. Therefore, obtaining reliable high-quality wind speed prediction is of great importance for the planning and application of wind energy. The purpose of this study is to develop a hybrid model for short-term wind speed forecasting and quantifying its uncertainty. In this study, Minimal Gated Memory Network is proposed to reduce the training time without significantly decreasing the prediction accuracy. Furthermore, a new hybrid method combining Quantile Regression and Minimal Gated Memory Network is proposed to predict conditional quantile of wind speed. Afterwards, Kernel Density Estimation method is used to estimate wind speed probabilistic density function according to these conditional quantiles of wind speed. In order to make the model show better performance, Maximal Information Coefficient is used to select the feature variables while Genetic Algorithm is used to obtain optimal feature combinations. Finally, the performance of the proposed model is verified by seven state-of-the-art models through four cases in Inner Mongolia, China from five aspects: point prediction accuracy, interval prediction suitability, probability prediction comprehensive performance, forecast reliability and training time. The experimental results show that the proposed model is able to obtain point prediction results with high accuracy, suitable prediction interval and probability distribution function with strong reliability in a relatively short time on the prediction problems of wind speed." @default.
- W2961011421 created "2019-07-23" @default.
- W2961011421 creator A5003453695 @default.
- W2961011421 creator A5013959664 @default.
- W2961011421 creator A5061972088 @default.
- W2961011421 creator A5063935647 @default.
- W2961011421 creator A5074423713 @default.
- W2961011421 creator A5076202709 @default.
- W2961011421 creator A5079367813 @default.
- W2961011421 creator A5088940678 @default.
- W2961011421 date "2019-09-01" @default.
- W2961011421 modified "2023-10-16" @default.
- W2961011421 title "Wind speed forecasting based on Quantile Regression Minimal Gated Memory Network and Kernel Density Estimation" @default.
- W2961011421 cites W1689711448 @default.
- W2961011421 cites W1973778471 @default.
- W2961011421 cites W1980760394 @default.
- W2961011421 cites W1984703120 @default.
- W2961011421 cites W2004803051 @default.
- W2961011421 cites W2039238531 @default.
- W2961011421 cites W2045979066 @default.
- W2961011421 cites W2064374926 @default.
- W2961011421 cites W2064675550 @default.
- W2961011421 cites W2070960910 @default.
- W2961011421 cites W2074715647 @default.
- W2961011421 cites W2119839985 @default.
- W2961011421 cites W2127427647 @default.
- W2961011421 cites W2137295153 @default.
- W2961011421 cites W2141838814 @default.
- W2961011421 cites W2175389419 @default.
- W2961011421 cites W2340896543 @default.
- W2961011421 cites W2511683089 @default.
- W2961011421 cites W2600148249 @default.
- W2961011421 cites W2606283685 @default.
- W2961011421 cites W2607339923 @default.
- W2961011421 cites W2767124238 @default.
- W2961011421 cites W2791974356 @default.
- W2961011421 cites W2792703144 @default.
- W2961011421 cites W2793121129 @default.
- W2961011421 cites W2883694838 @default.
- W2961011421 cites W2903162817 @default.
- W2961011421 cites W2916178449 @default.
- W2961011421 cites W2919115771 @default.
- W2961011421 cites W2937276134 @default.
- W2961011421 cites W2937440203 @default.
- W2961011421 cites W4241996101 @default.
- W2961011421 cites W2768891253 @default.
- W2961011421 doi "https://doi.org/10.1016/j.enconman.2019.06.024" @default.
- W2961011421 hasPublicationYear "2019" @default.
- W2961011421 type Work @default.
- W2961011421 sameAs 2961011421 @default.
- W2961011421 citedByCount "69" @default.
- W2961011421 countsByYear W29610114212019 @default.
- W2961011421 countsByYear W29610114212020 @default.
- W2961011421 countsByYear W29610114212021 @default.
- W2961011421 countsByYear W29610114212022 @default.
- W2961011421 countsByYear W29610114212023 @default.
- W2961011421 crossrefType "journal-article" @default.
- W2961011421 hasAuthorship W2961011421A5003453695 @default.
- W2961011421 hasAuthorship W2961011421A5013959664 @default.
- W2961011421 hasAuthorship W2961011421A5061972088 @default.
- W2961011421 hasAuthorship W2961011421A5063935647 @default.
- W2961011421 hasAuthorship W2961011421A5074423713 @default.
- W2961011421 hasAuthorship W2961011421A5076202709 @default.
- W2961011421 hasAuthorship W2961011421A5079367813 @default.
- W2961011421 hasAuthorship W2961011421A5088940678 @default.
- W2961011421 hasConcept C105795698 @default.
- W2961011421 hasConcept C114614502 @default.
- W2961011421 hasConcept C118671147 @default.
- W2961011421 hasConcept C127413603 @default.
- W2961011421 hasConcept C149782125 @default.
- W2961011421 hasConcept C153294291 @default.
- W2961011421 hasConcept C161067210 @default.
- W2961011421 hasConcept C185429906 @default.
- W2961011421 hasConcept C200695384 @default.
- W2961011421 hasConcept C201995342 @default.
- W2961011421 hasConcept C205649164 @default.
- W2961011421 hasConcept C33923547 @default.
- W2961011421 hasConcept C39432304 @default.
- W2961011421 hasConcept C41008148 @default.
- W2961011421 hasConcept C63817138 @default.
- W2961011421 hasConcept C71134354 @default.
- W2961011421 hasConcept C74193536 @default.
- W2961011421 hasConcept C83546350 @default.
- W2961011421 hasConcept C96250715 @default.
- W2961011421 hasConceptScore W2961011421C105795698 @default.
- W2961011421 hasConceptScore W2961011421C114614502 @default.
- W2961011421 hasConceptScore W2961011421C118671147 @default.
- W2961011421 hasConceptScore W2961011421C127413603 @default.
- W2961011421 hasConceptScore W2961011421C149782125 @default.
- W2961011421 hasConceptScore W2961011421C153294291 @default.
- W2961011421 hasConceptScore W2961011421C161067210 @default.
- W2961011421 hasConceptScore W2961011421C185429906 @default.
- W2961011421 hasConceptScore W2961011421C200695384 @default.
- W2961011421 hasConceptScore W2961011421C201995342 @default.
- W2961011421 hasConceptScore W2961011421C205649164 @default.
- W2961011421 hasConceptScore W2961011421C33923547 @default.
- W2961011421 hasConceptScore W2961011421C39432304 @default.
- W2961011421 hasConceptScore W2961011421C41008148 @default.