Matches in SemOpenAlex for { <https://semopenalex.org/work/W2961679963> ?p ?o ?g. }
- W2961679963 endingPage "1040" @default.
- W2961679963 startingPage "1022" @default.
- W2961679963 abstract "Developing artificial metalloproteins represents a valuable approach for understanding at the molecular level how nature tunes the metal center reactivity, thus producing functional diversity. The field of protein design and engineering has progressed spectacularly in the past decades. Starting from the construction of simple structural mimics, insertion of further levels of complexity (such as second-shell interactions) enables fine-tuning and expansion of activities in artificial metalloproteins. Currently, a variety of functions are being implanted into peptide/protein scaffolds, thus producing artificial catalysts, competent under environmentally benign conditions and with high turnovers. By joining the power of different and complementary strategies, designers can shape the protein scaffold and optimize and/or repurpose the metalloprotein function, toward demanding needs. Metalloproteins are crucial for life. The mutual relationship between metal ions and proteins makes metalloproteins able to accomplish key processes in biological systems, often very difficult to reproduce with inorganic coordination compounds under mild conditions. Taking inspiration from nature, many efforts have been devoted to developing artificial molecules as metalloprotein mimics. We have witnessed an explosion of protein design strategies leading to designed metalloproteins, ranging from stable structures to functional molecules. This review illustrates the most recent results for inserting metalloprotein functions in designed and engineered protein scaffolds. The selected examples highlight the potential of different approaches for the construction of artificial molecules capable of simulating and even overcoming the features of natural metalloproteins. Metalloproteins are crucial for life. The mutual relationship between metal ions and proteins makes metalloproteins able to accomplish key processes in biological systems, often very difficult to reproduce with inorganic coordination compounds under mild conditions. Taking inspiration from nature, many efforts have been devoted to developing artificial molecules as metalloprotein mimics. We have witnessed an explosion of protein design strategies leading to designed metalloproteins, ranging from stable structures to functional molecules. This review illustrates the most recent results for inserting metalloprotein functions in designed and engineered protein scaffolds. The selected examples highlight the potential of different approaches for the construction of artificial molecules capable of simulating and even overcoming the features of natural metalloproteins. general strategy for protein design based on arranging hydrophobic and hydrophilic amino acids into specific sequence positions to match the repeat of the target secondary structure. This binary code does not require explicit specification of the residue identity. Imposing such a binary pattern on each heptad repeat of a de novo-designed α-helix enables it to fold and stabilize by self-associating with other helices, giving rise to helical bundle structures with nonpolar residues buried in the core. widespread motifs in biology and attractive simple scaffolds for protein design. They are formed by two or more self-assembled α-helices, which intertwine to form a left-handed supercoil. Coiled coils are often characterized by a seven-residue (heptad) repeat comprising both hydrophobic and hydrophilic amino acids. Successive positions in this heptad are generally designated by the letters a through g, with the a and d positions always directed toward the interior of the bundle. molecular entity formed by a central metal atom or ion surrounded by a set of ligands in a defined geometry. According to the IUPAC nomenclature, coordination implies ‘the formation of a covalent bond, the two shared electrons of which have come from only one of the two parts of the molecular entity linked by it, as in the reaction of a Lewis acid and a Lewis base to form a Lewis adduct’. inner sphere containing those ligands directly interacting with the central metal atom or ion. metalloenzymes containing two or more different metal centers. transient intermediates formed during catalytic cycles, containing an oxo ligand bound to the metal ion in a high oxidation state, able to transfer the oxygen atom to a substrate or to accept electrons from substrates. atoms or groups of atoms bound to a metal ion. They are electron-pair donors (Lewis bases). Depending on the number of electron pairs (one or more) donated to the metal ion, they are classified as monodentate, bidentate, or polydentate. outer sphere containing those groups interacting with inner-sphere ligands. the number of substrate molecules that a single catalytic center converts into products before inactivation. copper site involved in ET. A central Cu2+ is coordinated by three conserved equatorial residues (two histidines and one cysteine) in a nearly trigonal geometry. Additional, more weakly bound axial ligands (methionine sulfur atom, glutamine side-chain amide oxygen atom, or glycine backbone carbonyl oxygen) can be also present. copper site involved in substrate binding and activation. It predominantly contains histidine ligands. The number and nature of additional ligands, as well as the geometry, vary between different enzymes." @default.
- W2961679963 created "2019-07-23" @default.
- W2961679963 creator A5003176222 @default.
- W2961679963 creator A5035394769 @default.
- W2961679963 creator A5054919317 @default.
- W2961679963 creator A5059170387 @default.
- W2961679963 creator A5066156912 @default.
- W2961679963 creator A5090517829 @default.
- W2961679963 date "2019-12-01" @default.
- W2961679963 modified "2023-10-10" @default.
- W2961679963 title "Engineering Metalloprotein Functions in Designed and Native Scaffolds" @default.
- W2961679963 cites W1667811244 @default.
- W2961679963 cites W1769489414 @default.
- W2961679963 cites W1787348572 @default.
- W2961679963 cites W1870141438 @default.
- W2961679963 cites W1893060939 @default.
- W2961679963 cites W1916034164 @default.
- W2961679963 cites W1965705572 @default.
- W2961679963 cites W1966935274 @default.
- W2961679963 cites W1969660397 @default.
- W2961679963 cites W1970982745 @default.
- W2961679963 cites W1974312616 @default.
- W2961679963 cites W1978964903 @default.
- W2961679963 cites W1980433289 @default.
- W2961679963 cites W1984854950 @default.
- W2961679963 cites W1985042139 @default.
- W2961679963 cites W1988637509 @default.
- W2961679963 cites W1999718832 @default.
- W2961679963 cites W2007606609 @default.
- W2961679963 cites W2008279485 @default.
- W2961679963 cites W2009121238 @default.
- W2961679963 cites W2012073519 @default.
- W2961679963 cites W2012837790 @default.
- W2961679963 cites W2013547144 @default.
- W2961679963 cites W2014011029 @default.
- W2961679963 cites W2015078708 @default.
- W2961679963 cites W2018347648 @default.
- W2961679963 cites W2019137326 @default.
- W2961679963 cites W2031286484 @default.
- W2961679963 cites W2038201483 @default.
- W2961679963 cites W2040293024 @default.
- W2961679963 cites W2041230004 @default.
- W2961679963 cites W2041860237 @default.
- W2961679963 cites W2054687056 @default.
- W2961679963 cites W2056699351 @default.
- W2961679963 cites W2061678146 @default.
- W2961679963 cites W2063755536 @default.
- W2961679963 cites W2064576403 @default.
- W2961679963 cites W2064866160 @default.
- W2961679963 cites W2066222983 @default.
- W2961679963 cites W2067424042 @default.
- W2961679963 cites W2067598960 @default.
- W2961679963 cites W2073237479 @default.
- W2961679963 cites W2074013821 @default.
- W2961679963 cites W2082334266 @default.
- W2961679963 cites W2090265120 @default.
- W2961679963 cites W2091777189 @default.
- W2961679963 cites W2093448565 @default.
- W2961679963 cites W2097234267 @default.
- W2961679963 cites W2102028493 @default.
- W2961679963 cites W2104460080 @default.
- W2961679963 cites W2108623728 @default.
- W2961679963 cites W2119414767 @default.
- W2961679963 cites W2139094273 @default.
- W2961679963 cites W2144292836 @default.
- W2961679963 cites W2148819519 @default.
- W2961679963 cites W2153089815 @default.
- W2961679963 cites W2163928997 @default.
- W2961679963 cites W2170434288 @default.
- W2961679963 cites W2176126080 @default.
- W2961679963 cites W2195840322 @default.
- W2961679963 cites W2202671840 @default.
- W2961679963 cites W2210464517 @default.
- W2961679963 cites W2282106008 @default.
- W2961679963 cites W2296423762 @default.
- W2961679963 cites W2312455466 @default.
- W2961679963 cites W2315816411 @default.
- W2961679963 cites W2321149738 @default.
- W2961679963 cites W2328143741 @default.
- W2961679963 cites W2331937820 @default.
- W2961679963 cites W2333550456 @default.
- W2961679963 cites W2335507105 @default.
- W2961679963 cites W2344463784 @default.
- W2961679963 cites W2409713090 @default.
- W2961679963 cites W2415341105 @default.
- W2961679963 cites W2433650340 @default.
- W2961679963 cites W2436169471 @default.
- W2961679963 cites W2465674018 @default.
- W2961679963 cites W2467802767 @default.
- W2961679963 cites W2499540264 @default.
- W2961679963 cites W2504464209 @default.
- W2961679963 cites W2507192932 @default.
- W2961679963 cites W2509305261 @default.
- W2961679963 cites W2509806303 @default.
- W2961679963 cites W2510208169 @default.
- W2961679963 cites W2518065908 @default.
- W2961679963 cites W2528052836 @default.
- W2961679963 cites W2534014350 @default.