Matches in SemOpenAlex for { <https://semopenalex.org/work/W2961896763> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2961896763 abstract "Bird sound identification has become one of the applications in audio recognition technology. Audio recognition is a great way to classify swiftlet‟s sound between baby, adult, and colony. In real life, biologists are having difficulties to identify the difference between these three types of sound except for human expert hearing experience in swiftlet farming. The identification of swiftlet sound is used to increase the production nest and quality of habitat because the main characteristic of swiftlet is its attraction toward sound. The aim of this study is to implement in swiftlet sound specifically using audio recognition to identify the types of sound. In this work, swiftlet sound feature extracted using Linear Predictive Cepstral Coefficient (LPCC), and Mel Frequency Cepstral Coefficient (MFCC) then classify the sounds using Minimum Distance Classifier (MDC), Vector Quantization (VQ) and Gaussian Mixture Model (GMM). Firstly, the features extracted using LPCC and MFCC are stored in the database. Secondly, feature extraction results in the database used for classifying the swiftlets sound using MDC, VQ with codebook size is 8, 16, 32 and 64 and GMM by 1-mixture and 2-mixture for classification. Thirdly, the best performance classification selected for an additional feature in feature extraction such as Delta and Delta-Acceleration qualifier to improve accuracy for getting a better result. Based on the result of this study, the best performance was selected based on higher accuracy identification is MFCC with GMM by 2-mixture accuracy 88.89%. At the end of the experiment, the MFCC with additional features Delta-Acceleration using classification GMM by 2-mixture with improvement 6.67% compared to original and make it up to 95.56% accuracy which is considered as good percentage result. As conclusion, the best feature extraction for swiftlet sound identification is MFCC with Delta-Acceleration features by classify the sound using GMM 2-mixture." @default.
- W2961896763 created "2019-07-23" @default.
- W2961896763 creator A5019646112 @default.
- W2961896763 creator A5031094834 @default.
- W2961896763 date "2018-08-01" @default.
- W2961896763 modified "2023-09-27" @default.
- W2961896763 title "Swiftlet sound identification using vector quantization and gaussian mixture model" @default.
- W2961896763 hasPublicationYear "2018" @default.
- W2961896763 type Work @default.
- W2961896763 sameAs 2961896763 @default.
- W2961896763 citedByCount "0" @default.
- W2961896763 crossrefType "dissertation" @default.
- W2961896763 hasAuthorship W2961896763A5019646112 @default.
- W2961896763 hasAuthorship W2961896763A5031094834 @default.
- W2961896763 hasConcept C127759330 @default.
- W2961896763 hasConcept C151989614 @default.
- W2961896763 hasConcept C153180895 @default.
- W2961896763 hasConcept C154945302 @default.
- W2961896763 hasConcept C199833920 @default.
- W2961896763 hasConcept C28490314 @default.
- W2961896763 hasConcept C41008148 @default.
- W2961896763 hasConcept C52622490 @default.
- W2961896763 hasConcept C61224824 @default.
- W2961896763 hasConcept C83665646 @default.
- W2961896763 hasConcept C95623464 @default.
- W2961896763 hasConceptScore W2961896763C127759330 @default.
- W2961896763 hasConceptScore W2961896763C151989614 @default.
- W2961896763 hasConceptScore W2961896763C153180895 @default.
- W2961896763 hasConceptScore W2961896763C154945302 @default.
- W2961896763 hasConceptScore W2961896763C199833920 @default.
- W2961896763 hasConceptScore W2961896763C28490314 @default.
- W2961896763 hasConceptScore W2961896763C41008148 @default.
- W2961896763 hasConceptScore W2961896763C52622490 @default.
- W2961896763 hasConceptScore W2961896763C61224824 @default.
- W2961896763 hasConceptScore W2961896763C83665646 @default.
- W2961896763 hasConceptScore W2961896763C95623464 @default.
- W2961896763 hasLocation W29618967631 @default.
- W2961896763 hasOpenAccess W2961896763 @default.
- W2961896763 hasPrimaryLocation W29618967631 @default.
- W2961896763 hasRelatedWork W1591402049 @default.
- W2961896763 hasRelatedWork W2041406808 @default.
- W2961896763 hasRelatedWork W2057731362 @default.
- W2961896763 hasRelatedWork W2117030948 @default.
- W2961896763 hasRelatedWork W2155377767 @default.
- W2961896763 hasRelatedWork W2213770903 @default.
- W2961896763 hasRelatedWork W2296543338 @default.
- W2961896763 hasRelatedWork W2353114857 @default.
- W2961896763 hasRelatedWork W2384739664 @default.
- W2961896763 hasRelatedWork W2460694607 @default.
- W2961896763 hasRelatedWork W2519833279 @default.
- W2961896763 hasRelatedWork W2810478609 @default.
- W2961896763 hasRelatedWork W2893964920 @default.
- W2961896763 hasRelatedWork W2900121789 @default.
- W2961896763 hasRelatedWork W2921635047 @default.
- W2961896763 hasRelatedWork W2944078757 @default.
- W2961896763 hasRelatedWork W3009295899 @default.
- W2961896763 hasRelatedWork W3120674463 @default.
- W2961896763 hasRelatedWork W2813279480 @default.
- W2961896763 hasRelatedWork W2814463735 @default.
- W2961896763 isParatext "false" @default.
- W2961896763 isRetracted "false" @default.
- W2961896763 magId "2961896763" @default.
- W2961896763 workType "dissertation" @default.