Matches in SemOpenAlex for { <https://semopenalex.org/work/W2961904766> ?p ?o ?g. }
- W2961904766 abstract "Abstract Background This paper presents a conditional random fields (CRF) method that enables the capture of specific high-order label transition factors to improve clinical named entity recognition performance. Consecutive clinical entities in a sentence are usually separated from each other, and the textual descriptions in clinical narrative documents frequently indicate causal or posterior relationships that can be used to facilitate clinical named entity recognition. However, the CRF that is generally used for named entity recognition is a first-order model that constrains label transition dependency of adjoining labels under the Markov assumption. Methods Based on the first-order structure, our proposed model utilizes non-entity tokens between separated entities as an information transmission medium by applying a label induction method. The model is referred to as precursor-induced CRF because its non-entity state memorizes precursor entity information, and the model’s structure allows the precursor entity information to propagate forward through the label sequence. Results We compared the proposed model with both first- and second-order CRFs in terms of their F 1 -scores, using two clinical named entity recognition corpora (the i2b2 2012 challenge and the Seoul National University Hospital electronic health record). The proposed model demonstrated better entity recognition performance than both the first- and second-order CRFs and was also more efficient than the higher-order model. Conclusion The proposed precursor-induced CRF which uses non-entity labels as label transition information improves entity recognition F 1 score by exploiting long-distance transition factors without exponentially increasing the computational time. In contrast, a conventional second-order CRF model that uses longer distance transition factors showed even worse results than the first-order model and required the longest computation time. Thus, the proposed model could offer a considerable performance improvement over current clinical named entity recognition methods based on the CRF models." @default.
- W2961904766 created "2019-07-23" @default.
- W2961904766 creator A5051234199 @default.
- W2961904766 creator A5063678203 @default.
- W2961904766 date "2019-07-15" @default.
- W2961904766 modified "2023-09-25" @default.
- W2961904766 title "Precursor-induced conditional random fields: connecting separate entities by induction for improved clinical named entity recognition" @default.
- W2961904766 cites W1019512417 @default.
- W2961904766 cites W1866463160 @default.
- W2961904766 cites W2004763266 @default.
- W2961904766 cites W2004764776 @default.
- W2961904766 cites W2009790391 @default.
- W2961904766 cites W2018874418 @default.
- W2961904766 cites W2061834489 @default.
- W2961904766 cites W2107435951 @default.
- W2961904766 cites W2114668172 @default.
- W2961904766 cites W2137407193 @default.
- W2961904766 cites W2144578941 @default.
- W2961904766 cites W2146446188 @default.
- W2961904766 cites W2151296343 @default.
- W2961904766 cites W2155276279 @default.
- W2961904766 cites W2168041406 @default.
- W2961904766 cites W2169818249 @default.
- W2961904766 cites W2468432491 @default.
- W2961904766 cites W2469314752 @default.
- W2961904766 cites W2582146834 @default.
- W2961904766 cites W2623520931 @default.
- W2961904766 cites W2625967121 @default.
- W2961904766 cites W2725541287 @default.
- W2961904766 cites W2729101176 @default.
- W2961904766 cites W2737787616 @default.
- W2961904766 cites W2769851464 @default.
- W2961904766 cites W2791610528 @default.
- W2961904766 cites W2887212021 @default.
- W2961904766 cites W2963956191 @default.
- W2961904766 cites W3122634526 @default.
- W2961904766 cites W4206192903 @default.
- W2961904766 cites W4234024965 @default.
- W2961904766 doi "https://doi.org/10.1186/s12911-019-0865-1" @default.
- W2961904766 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6632205" @default.
- W2961904766 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31307440" @default.
- W2961904766 hasPublicationYear "2019" @default.
- W2961904766 type Work @default.
- W2961904766 sameAs 2961904766 @default.
- W2961904766 citedByCount "2" @default.
- W2961904766 countsByYear W29619047662022 @default.
- W2961904766 countsByYear W29619047662023 @default.
- W2961904766 crossrefType "journal-article" @default.
- W2961904766 hasAuthorship W2961904766A5051234199 @default.
- W2961904766 hasAuthorship W2961904766A5063678203 @default.
- W2961904766 hasBestOaLocation W29619047661 @default.
- W2961904766 hasConcept C10138342 @default.
- W2961904766 hasConcept C104317684 @default.
- W2961904766 hasConcept C152565575 @default.
- W2961904766 hasConcept C153180895 @default.
- W2961904766 hasConcept C154945302 @default.
- W2961904766 hasConcept C162324750 @default.
- W2961904766 hasConcept C182306322 @default.
- W2961904766 hasConcept C185592680 @default.
- W2961904766 hasConcept C187736073 @default.
- W2961904766 hasConcept C194232998 @default.
- W2961904766 hasConcept C195807954 @default.
- W2961904766 hasConcept C19768560 @default.
- W2961904766 hasConcept C204321447 @default.
- W2961904766 hasConcept C23123220 @default.
- W2961904766 hasConcept C23224414 @default.
- W2961904766 hasConcept C2775953691 @default.
- W2961904766 hasConcept C2777530160 @default.
- W2961904766 hasConcept C2779135771 @default.
- W2961904766 hasConcept C2780451532 @default.
- W2961904766 hasConcept C35639132 @default.
- W2961904766 hasConcept C41008148 @default.
- W2961904766 hasConcept C55493867 @default.
- W2961904766 hasConceptScore W2961904766C10138342 @default.
- W2961904766 hasConceptScore W2961904766C104317684 @default.
- W2961904766 hasConceptScore W2961904766C152565575 @default.
- W2961904766 hasConceptScore W2961904766C153180895 @default.
- W2961904766 hasConceptScore W2961904766C154945302 @default.
- W2961904766 hasConceptScore W2961904766C162324750 @default.
- W2961904766 hasConceptScore W2961904766C182306322 @default.
- W2961904766 hasConceptScore W2961904766C185592680 @default.
- W2961904766 hasConceptScore W2961904766C187736073 @default.
- W2961904766 hasConceptScore W2961904766C194232998 @default.
- W2961904766 hasConceptScore W2961904766C195807954 @default.
- W2961904766 hasConceptScore W2961904766C19768560 @default.
- W2961904766 hasConceptScore W2961904766C204321447 @default.
- W2961904766 hasConceptScore W2961904766C23123220 @default.
- W2961904766 hasConceptScore W2961904766C23224414 @default.
- W2961904766 hasConceptScore W2961904766C2775953691 @default.
- W2961904766 hasConceptScore W2961904766C2777530160 @default.
- W2961904766 hasConceptScore W2961904766C2779135771 @default.
- W2961904766 hasConceptScore W2961904766C2780451532 @default.
- W2961904766 hasConceptScore W2961904766C35639132 @default.
- W2961904766 hasConceptScore W2961904766C41008148 @default.
- W2961904766 hasConceptScore W2961904766C55493867 @default.
- W2961904766 hasFunder F4320321408 @default.
- W2961904766 hasFunder F4320322034 @default.
- W2961904766 hasIssue "1" @default.
- W2961904766 hasLocation W29619047661 @default.
- W2961904766 hasLocation W29619047662 @default.