Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962202225> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2962202225 endingPage "1073" @default.
- W2962202225 startingPage "1061" @default.
- W2962202225 abstract "Objective: The diversity of tissue structure in histopathological images makes feature extraction for classification a challenging task. Dictionary learning within a sparse representation-based classification (SRC) framework has been shown to be successful for feature discovery. However, there exist stiff practical challenges: 1) computational complexity of SRC can be onerous in the decision stage since it involves solving a sparsity constrained optimization problem and often over a large number of image patches; and 2) images from distinct classes continue to share several geometric features. We propose a novel analysis–synthesis model learning with shared features algorithm (ALSF) for classifying such images more effectively. Methods: In the ALSF, a joint analysis and synthesis learning model is introduced to learn the classifier and the feature extractor at the same time. Unlike SRC, no explicit optimization is needed in the inference phase leading to much reduced computation. Crucially, we introduce the learning of a low-rank shared dictionary and a shared analysis operator, which more accurately represents both similarities and differences in histopathological images from distinct classes. We also develop an extension of ALSF with a sparsity constraint, whose presence or absence facilitates a cost–performance tradeoff. Results: The ALSF is evaluated on three challenging and well-known datasets: 1) spleen tissue images; 2) brain tumor images; and 3) breast cancer tissue dataset, provided by different organizations. Conclusion: Experimental results demonstrate both complexity and performance benefits of the ALSF over state-of-the-art alternatives. Significance: Modeling shared features with appropriate quantitative constraints lead to significantly improved classification in histopathology." @default.
- W2962202225 created "2019-07-23" @default.
- W2962202225 creator A5014013504 @default.
- W2962202225 creator A5055177626 @default.
- W2962202225 creator A5067785367 @default.
- W2962202225 date "2020-04-01" @default.
- W2962202225 modified "2023-09-24" @default.
- W2962202225 title "Analysis–Synthesis Learning With Shared Features: Algorithms for Histology Image Classification" @default.
- W2962202225 cites W134688180 @default.
- W2962202225 cites W1835905048 @default.
- W2962202225 cites W1921479191 @default.
- W2962202225 cites W1972552638 @default.
- W2962202225 cites W1998929974 @default.
- W2962202225 cites W2037696125 @default.
- W2962202225 cites W2062118960 @default.
- W2962202225 cites W2079385922 @default.
- W2962202225 cites W2083906081 @default.
- W2962202225 cites W2092853008 @default.
- W2962202225 cites W2100556411 @default.
- W2962202225 cites W2103243046 @default.
- W2962202225 cites W2103972604 @default.
- W2962202225 cites W2107901014 @default.
- W2962202225 cites W2127831489 @default.
- W2962202225 cites W2129812935 @default.
- W2962202225 cites W2153635508 @default.
- W2962202225 cites W2159551006 @default.
- W2962202225 cites W2159931675 @default.
- W2962202225 cites W2165879419 @default.
- W2962202225 cites W2554892747 @default.
- W2962202225 cites W2592929672 @default.
- W2962202225 cites W2609584387 @default.
- W2962202225 cites W2618530766 @default.
- W2962202225 cites W2637598222 @default.
- W2962202225 cites W2766865858 @default.
- W2962202225 cites W2964181843 @default.
- W2962202225 cites W3100455090 @default.
- W2962202225 doi "https://doi.org/10.1109/tbme.2019.2928997" @default.
- W2962202225 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31329103" @default.
- W2962202225 hasPublicationYear "2020" @default.
- W2962202225 type Work @default.
- W2962202225 sameAs 2962202225 @default.
- W2962202225 citedByCount "7" @default.
- W2962202225 countsByYear W29622022252021 @default.
- W2962202225 countsByYear W29622022252022 @default.
- W2962202225 countsByYear W29622022252023 @default.
- W2962202225 crossrefType "journal-article" @default.
- W2962202225 hasAuthorship W2962202225A5014013504 @default.
- W2962202225 hasAuthorship W2962202225A5055177626 @default.
- W2962202225 hasAuthorship W2962202225A5067785367 @default.
- W2962202225 hasConcept C11413529 @default.
- W2962202225 hasConcept C115961682 @default.
- W2962202225 hasConcept C119857082 @default.
- W2962202225 hasConcept C153180895 @default.
- W2962202225 hasConcept C154945302 @default.
- W2962202225 hasConcept C31972630 @default.
- W2962202225 hasConcept C41008148 @default.
- W2962202225 hasConcept C75294576 @default.
- W2962202225 hasConceptScore W2962202225C11413529 @default.
- W2962202225 hasConceptScore W2962202225C115961682 @default.
- W2962202225 hasConceptScore W2962202225C119857082 @default.
- W2962202225 hasConceptScore W2962202225C153180895 @default.
- W2962202225 hasConceptScore W2962202225C154945302 @default.
- W2962202225 hasConceptScore W2962202225C31972630 @default.
- W2962202225 hasConceptScore W2962202225C41008148 @default.
- W2962202225 hasConceptScore W2962202225C75294576 @default.
- W2962202225 hasFunder F4320306095 @default.
- W2962202225 hasFunder F4320337351 @default.
- W2962202225 hasIssue "4" @default.
- W2962202225 hasLocation W29622022251 @default.
- W2962202225 hasOpenAccess W2962202225 @default.
- W2962202225 hasPrimaryLocation W29622022251 @default.
- W2962202225 hasRelatedWork W2005185696 @default.
- W2962202225 hasRelatedWork W2092957489 @default.
- W2962202225 hasRelatedWork W2130228941 @default.
- W2962202225 hasRelatedWork W2132132164 @default.
- W2962202225 hasRelatedWork W2161229648 @default.
- W2962202225 hasRelatedWork W2235753890 @default.
- W2962202225 hasRelatedWork W2314419244 @default.
- W2962202225 hasRelatedWork W2366116130 @default.
- W2962202225 hasRelatedWork W2742991909 @default.
- W2962202225 hasRelatedWork W2993674027 @default.
- W2962202225 hasVolume "67" @default.
- W2962202225 isParatext "false" @default.
- W2962202225 isRetracted "false" @default.
- W2962202225 magId "2962202225" @default.
- W2962202225 workType "article" @default.