Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962202950> ?p ?o ?g. }
- W2962202950 abstract "Neural networks are becoming more and more important for intelligent communications and their theoretical research has become a top priority. Loss surfaces are crucial to understand and improve performance in neural networks. In this paper, the Hessian matrix of second order optimization method is analyzed through the analytical framework of random matrix theory (RMT) in order to understand the geometry of loss surfaces. The limited spectrum distribution, extreme eigenvalue distribution, and standard condition number (SCN) of Hessian matrix are analyzed to understand their asymptotic characteristics. Moreover, the relationships among the extreme eigenvalue distribution, SCN, and the convergence of loss surfaces are investigated. The above analyses give insight into utilizing RMT to analyze the neural network theory." @default.
- W2962202950 created "2019-07-23" @default.
- W2962202950 creator A5023217026 @default.
- W2962202950 creator A5058686298 @default.
- W2962202950 creator A5060178337 @default.
- W2962202950 creator A5060663114 @default.
- W2962202950 creator A5088275721 @default.
- W2962202950 date "2019-05-01" @default.
- W2962202950 modified "2023-09-25" @default.
- W2962202950 title "Standard Condition Number of Hessian Matrix for Neural Networks" @default.
- W2962202950 cites W1677105051 @default.
- W2962202950 cites W1899249567 @default.
- W2962202950 cites W1932472321 @default.
- W2962202950 cites W2006755239 @default.
- W2962202950 cites W2055039038 @default.
- W2962202950 cites W2060581589 @default.
- W2962202950 cites W2067416688 @default.
- W2962202950 cites W2073064881 @default.
- W2962202950 cites W2112796928 @default.
- W2962202950 cites W2132549764 @default.
- W2962202950 cites W2147584524 @default.
- W2962202950 cites W2500224956 @default.
- W2962202950 cites W2567927519 @default.
- W2962202950 cites W2577176882 @default.
- W2962202950 cites W2618381130 @default.
- W2962202950 cites W2626325961 @default.
- W2962202950 cites W2735872091 @default.
- W2962202950 cites W2745723384 @default.
- W2962202950 cites W2752851182 @default.
- W2962202950 cites W2766873928 @default.
- W2962202950 cites W2782977076 @default.
- W2962202950 cites W2887597596 @default.
- W2962202950 cites W2888108833 @default.
- W2962202950 cites W2894866963 @default.
- W2962202950 cites W2903749698 @default.
- W2962202950 cites W2914484425 @default.
- W2962202950 cites W2963650649 @default.
- W2962202950 cites W2963889719 @default.
- W2962202950 cites W2966173098 @default.
- W2962202950 doi "https://doi.org/10.1109/icc.2019.8761740" @default.
- W2962202950 hasPublicationYear "2019" @default.
- W2962202950 type Work @default.
- W2962202950 sameAs 2962202950 @default.
- W2962202950 citedByCount "4" @default.
- W2962202950 countsByYear W29622029502020 @default.
- W2962202950 countsByYear W29622029502021 @default.
- W2962202950 crossrefType "proceedings-article" @default.
- W2962202950 hasAuthorship W2962202950A5023217026 @default.
- W2962202950 hasAuthorship W2962202950A5058686298 @default.
- W2962202950 hasAuthorship W2962202950A5060178337 @default.
- W2962202950 hasAuthorship W2962202950A5060663114 @default.
- W2962202950 hasAuthorship W2962202950A5088275721 @default.
- W2962202950 hasConcept C106487976 @default.
- W2962202950 hasConcept C11413529 @default.
- W2962202950 hasConcept C121332964 @default.
- W2962202950 hasConcept C126255220 @default.
- W2962202950 hasConcept C134306372 @default.
- W2962202950 hasConcept C154945302 @default.
- W2962202950 hasConcept C158693339 @default.
- W2962202950 hasConcept C159985019 @default.
- W2962202950 hasConcept C162324750 @default.
- W2962202950 hasConcept C192562407 @default.
- W2962202950 hasConcept C203616005 @default.
- W2962202950 hasConcept C2777303404 @default.
- W2962202950 hasConcept C28826006 @default.
- W2962202950 hasConcept C33923547 @default.
- W2962202950 hasConcept C41008148 @default.
- W2962202950 hasConcept C50522688 @default.
- W2962202950 hasConcept C50644808 @default.
- W2962202950 hasConcept C62520636 @default.
- W2962202950 hasConcept C64057670 @default.
- W2962202950 hasConcept C73729460 @default.
- W2962202950 hasConcept C78045399 @default.
- W2962202950 hasConceptScore W2962202950C106487976 @default.
- W2962202950 hasConceptScore W2962202950C11413529 @default.
- W2962202950 hasConceptScore W2962202950C121332964 @default.
- W2962202950 hasConceptScore W2962202950C126255220 @default.
- W2962202950 hasConceptScore W2962202950C134306372 @default.
- W2962202950 hasConceptScore W2962202950C154945302 @default.
- W2962202950 hasConceptScore W2962202950C158693339 @default.
- W2962202950 hasConceptScore W2962202950C159985019 @default.
- W2962202950 hasConceptScore W2962202950C162324750 @default.
- W2962202950 hasConceptScore W2962202950C192562407 @default.
- W2962202950 hasConceptScore W2962202950C203616005 @default.
- W2962202950 hasConceptScore W2962202950C2777303404 @default.
- W2962202950 hasConceptScore W2962202950C28826006 @default.
- W2962202950 hasConceptScore W2962202950C33923547 @default.
- W2962202950 hasConceptScore W2962202950C41008148 @default.
- W2962202950 hasConceptScore W2962202950C50522688 @default.
- W2962202950 hasConceptScore W2962202950C50644808 @default.
- W2962202950 hasConceptScore W2962202950C62520636 @default.
- W2962202950 hasConceptScore W2962202950C64057670 @default.
- W2962202950 hasConceptScore W2962202950C73729460 @default.
- W2962202950 hasConceptScore W2962202950C78045399 @default.
- W2962202950 hasLocation W29622029501 @default.
- W2962202950 hasOpenAccess W2962202950 @default.
- W2962202950 hasPrimaryLocation W29622029501 @default.
- W2962202950 hasRelatedWork W101878 @default.
- W2962202950 hasRelatedWork W193095829 @default.
- W2962202950 hasRelatedWork W1980339196 @default.