Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962217138> ?p ?o ?g. }
- W2962217138 endingPage "1474" @default.
- W2962217138 startingPage "1461" @default.
- W2962217138 abstract "This paper proposes a novel end-to-end learning model, called skip-connected covariance (SCCov) network, for remote sensing scene classification (RSSC). The innovative contribution of this paper is to embed two novel modules into the traditional convolutional neural network (CNN) model, i.e., skip connections and covariance pooling. The advantages of newly developed SCCov are twofold. First, by means of the skip connections, the multi-resolution feature maps produced by the CNN are combined together, which provides important benefits to address the presence of large-scale variance in RSSC data sets. Second, by using covariance pooling, we can fully exploit the second-order information contained in such multi-resolution feature maps. This allows the CNN to achieve more representative feature learning when dealing with RSSC problems. Experimental results, conducted using three large-scale benchmark data sets, demonstrate that our newly proposed SCCov network exhibits very competitive or superior classification performance when compared with the current state-of-the-art RSSC techniques, using a much lower amount of parameters. Specifically, our SCCov only needs 10% of the parameters used by its counterparts." @default.
- W2962217138 created "2019-07-23" @default.
- W2962217138 creator A5010624980 @default.
- W2962217138 creator A5054292278 @default.
- W2962217138 creator A5057842658 @default.
- W2962217138 creator A5065061505 @default.
- W2962217138 creator A5067097659 @default.
- W2962217138 date "2020-05-01" @default.
- W2962217138 modified "2023-10-16" @default.
- W2962217138 title "Skip-Connected Covariance Network for Remote Sensing Scene Classification" @default.
- W2962217138 cites W1576332977 @default.
- W2962217138 cites W1963882359 @default.
- W2962217138 cites W1965766334 @default.
- W2962217138 cites W1980038761 @default.
- W2962217138 cites W1986964250 @default.
- W2962217138 cites W2002281921 @default.
- W2962217138 cites W2051968191 @default.
- W2962217138 cites W2070452328 @default.
- W2962217138 cites W2086866337 @default.
- W2962217138 cites W2098676252 @default.
- W2962217138 cites W2102605133 @default.
- W2962217138 cites W2104657103 @default.
- W2962217138 cites W2105032938 @default.
- W2962217138 cites W2108598243 @default.
- W2962217138 cites W2151103935 @default.
- W2962217138 cites W2153425333 @default.
- W2962217138 cites W2161381512 @default.
- W2962217138 cites W2161969291 @default.
- W2962217138 cites W2168481151 @default.
- W2962217138 cites W2204257188 @default.
- W2962217138 cites W2221448138 @default.
- W2962217138 cites W2294802479 @default.
- W2962217138 cites W2303475025 @default.
- W2962217138 cites W2344340558 @default.
- W2962217138 cites W2347115704 @default.
- W2962217138 cites W2547715144 @default.
- W2962217138 cites W2564140372 @default.
- W2962217138 cites W2565639579 @default.
- W2962217138 cites W2601789736 @default.
- W2962217138 cites W2603422184 @default.
- W2962217138 cites W2611669764 @default.
- W2962217138 cites W2620429297 @default.
- W2962217138 cites W2620858446 @default.
- W2962217138 cites W2621526417 @default.
- W2962217138 cites W2715220489 @default.
- W2962217138 cites W2727875856 @default.
- W2962217138 cites W2744582969 @default.
- W2962217138 cites W2749507674 @default.
- W2962217138 cites W2752965000 @default.
- W2962217138 cites W2757208835 @default.
- W2962217138 cites W2767581044 @default.
- W2962217138 cites W2783165089 @default.
- W2962217138 cites W2789784903 @default.
- W2962217138 cites W2790754721 @default.
- W2962217138 cites W2792111852 @default.
- W2962217138 cites W2792332881 @default.
- W2962217138 cites W2799466885 @default.
- W2962217138 cites W2799870441 @default.
- W2962217138 cites W2809635958 @default.
- W2962217138 cites W2829067510 @default.
- W2962217138 cites W2883589384 @default.
- W2962217138 cites W2885776085 @default.
- W2962217138 cites W2887785636 @default.
- W2962217138 cites W2894544606 @default.
- W2962217138 cites W2907100627 @default.
- W2962217138 cites W2919115771 @default.
- W2962217138 cites W3102850314 @default.
- W2962217138 cites W3103856189 @default.
- W2962217138 cites W3105577662 @default.
- W2962217138 cites W639708223 @default.
- W2962217138 doi "https://doi.org/10.1109/tnnls.2019.2920374" @default.
- W2962217138 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31295122" @default.
- W2962217138 hasPublicationYear "2020" @default.
- W2962217138 type Work @default.
- W2962217138 sameAs 2962217138 @default.
- W2962217138 citedByCount "122" @default.
- W2962217138 countsByYear W29622171382020 @default.
- W2962217138 countsByYear W29622171382021 @default.
- W2962217138 countsByYear W29622171382022 @default.
- W2962217138 countsByYear W29622171382023 @default.
- W2962217138 crossrefType "journal-article" @default.
- W2962217138 hasAuthorship W2962217138A5010624980 @default.
- W2962217138 hasAuthorship W2962217138A5054292278 @default.
- W2962217138 hasAuthorship W2962217138A5057842658 @default.
- W2962217138 hasAuthorship W2962217138A5065061505 @default.
- W2962217138 hasAuthorship W2962217138A5067097659 @default.
- W2962217138 hasConcept C105795698 @default.
- W2962217138 hasConcept C119857082 @default.
- W2962217138 hasConcept C124101348 @default.
- W2962217138 hasConcept C13280743 @default.
- W2962217138 hasConcept C138885662 @default.
- W2962217138 hasConcept C153180895 @default.
- W2962217138 hasConcept C154945302 @default.
- W2962217138 hasConcept C165696696 @default.
- W2962217138 hasConcept C178650346 @default.
- W2962217138 hasConcept C185798385 @default.
- W2962217138 hasConcept C205649164 @default.
- W2962217138 hasConcept C2776401178 @default.