Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962425522> ?p ?o ?g. }
- W2962425522 endingPage "883" @default.
- W2962425522 startingPage "871" @default.
- W2962425522 abstract "Recently, machine learning (ML) has attracted the attention of both researchers and practitioners to address several issues in the optical networking field. This trend has been mainly driven by the huge amount of available data (i.e., signal quality indicators, network alarms, etc.) and to the large number of optimization parameters which feature current optical networks (such as, modulation format, lightpath routes, transport wavelength, etc.). In this paper, we leverage the techniques from the ML discipline to efficiently accomplish the routing and wavelength assignment (RWA) for an input traffic matrix in an optical WDM network. Numerical results show that near-optimal RWA can be obtained with our approach, while reducing computational time up to 93% in comparison to a traditional optimization approach based on integer linear programming. Moreover, to further demonstrate the effectiveness of our approach, we deployed the ML classifier into an ONOS-based software defined optical network laboratory testbed, where we evaluate the performance of the overall RWA process in terms of computational time." @default.
- W2962425522 created "2019-07-23" @default.
- W2962425522 creator A5000140450 @default.
- W2962425522 creator A5002501468 @default.
- W2962425522 creator A5028761078 @default.
- W2962425522 creator A5031532399 @default.
- W2962425522 creator A5041287258 @default.
- W2962425522 creator A5042021806 @default.
- W2962425522 creator A5078042281 @default.
- W2962425522 creator A5085518222 @default.
- W2962425522 date "2019-09-01" @default.
- W2962425522 modified "2023-10-18" @default.
- W2962425522 title "Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks" @default.
- W2962425522 cites W1653787390 @default.
- W2962425522 cites W1964650388 @default.
- W2962425522 cites W2051000513 @default.
- W2962425522 cites W2074616737 @default.
- W2962425522 cites W2091845854 @default.
- W2962425522 cites W2095463629 @default.
- W2962425522 cites W2096118443 @default.
- W2962425522 cites W2097287572 @default.
- W2962425522 cites W2098081907 @default.
- W2962425522 cites W2128084896 @default.
- W2962425522 cites W2136763443 @default.
- W2962425522 cites W2147118406 @default.
- W2962425522 cites W2157895134 @default.
- W2962425522 cites W2161251616 @default.
- W2962425522 cites W2170505850 @default.
- W2962425522 cites W2212315497 @default.
- W2962425522 cites W2281611560 @default.
- W2962425522 cites W2402852239 @default.
- W2962425522 cites W2471657514 @default.
- W2962425522 cites W2511505324 @default.
- W2962425522 cites W2548307888 @default.
- W2962425522 cites W2617931713 @default.
- W2962425522 cites W2620303912 @default.
- W2962425522 cites W2758107401 @default.
- W2962425522 cites W2759910885 @default.
- W2962425522 cites W2767151733 @default.
- W2962425522 cites W2778953328 @default.
- W2962425522 cites W2783034914 @default.
- W2962425522 cites W2787811863 @default.
- W2962425522 cites W2792354319 @default.
- W2962425522 cites W2809684781 @default.
- W2962425522 cites W2898035736 @default.
- W2962425522 cites W2903950532 @default.
- W2962425522 cites W2963549123 @default.
- W2962425522 cites W2964101383 @default.
- W2962425522 cites W3103211661 @default.
- W2962425522 cites W3126135128 @default.
- W2962425522 doi "https://doi.org/10.1109/tnsm.2019.2927867" @default.
- W2962425522 hasPublicationYear "2019" @default.
- W2962425522 type Work @default.
- W2962425522 sameAs 2962425522 @default.
- W2962425522 citedByCount "44" @default.
- W2962425522 countsByYear W29624255222020 @default.
- W2962425522 countsByYear W29624255222021 @default.
- W2962425522 countsByYear W29624255222022 @default.
- W2962425522 countsByYear W29624255222023 @default.
- W2962425522 crossrefType "journal-article" @default.
- W2962425522 hasAuthorship W2962425522A5000140450 @default.
- W2962425522 hasAuthorship W2962425522A5002501468 @default.
- W2962425522 hasAuthorship W2962425522A5028761078 @default.
- W2962425522 hasAuthorship W2962425522A5031532399 @default.
- W2962425522 hasAuthorship W2962425522A5041287258 @default.
- W2962425522 hasAuthorship W2962425522A5042021806 @default.
- W2962425522 hasAuthorship W2962425522A5078042281 @default.
- W2962425522 hasAuthorship W2962425522A5085518222 @default.
- W2962425522 hasBestOaLocation W29624255222 @default.
- W2962425522 hasConcept C11413529 @default.
- W2962425522 hasConcept C119857082 @default.
- W2962425522 hasConcept C120314980 @default.
- W2962425522 hasConcept C121332964 @default.
- W2962425522 hasConcept C153083717 @default.
- W2962425522 hasConcept C160724564 @default.
- W2962425522 hasConcept C199360897 @default.
- W2962425522 hasConcept C2777904410 @default.
- W2962425522 hasConcept C2778249599 @default.
- W2962425522 hasConcept C31258907 @default.
- W2962425522 hasConcept C31395832 @default.
- W2962425522 hasConcept C41008148 @default.
- W2962425522 hasConcept C49040817 @default.
- W2962425522 hasConcept C56086750 @default.
- W2962425522 hasConcept C6260449 @default.
- W2962425522 hasConcept C77270119 @default.
- W2962425522 hasConceptScore W2962425522C11413529 @default.
- W2962425522 hasConceptScore W2962425522C119857082 @default.
- W2962425522 hasConceptScore W2962425522C120314980 @default.
- W2962425522 hasConceptScore W2962425522C121332964 @default.
- W2962425522 hasConceptScore W2962425522C153083717 @default.
- W2962425522 hasConceptScore W2962425522C160724564 @default.
- W2962425522 hasConceptScore W2962425522C199360897 @default.
- W2962425522 hasConceptScore W2962425522C2777904410 @default.
- W2962425522 hasConceptScore W2962425522C2778249599 @default.
- W2962425522 hasConceptScore W2962425522C31258907 @default.
- W2962425522 hasConceptScore W2962425522C31395832 @default.
- W2962425522 hasConceptScore W2962425522C41008148 @default.
- W2962425522 hasConceptScore W2962425522C49040817 @default.