Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962685313> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2962685313 abstract "In many applications, linear models fit the data poorly. This article studies an appealing alternative, the generalized regression model. This model only assumes that there exists an unknown monotonically increasing link function connecting the response $Y$ to a single index $boldsymbol{X} ^{mathsf{T}}boldsymbol{beta } ^{*}$ of explanatory variables $boldsymbol{X} in{mathbb{R}} ^{d}$. The generalized regression model is flexible and covers many widely used statistical models. It fits the data generating mechanisms well in many real problems, which makes it useful in a variety of applications where regression models are regularly employed. In low dimensions, rank-based M-estimators are recommended to deal with the generalized regression model, giving root-$n$ consistent estimators of $boldsymbol{beta } ^{*}$. Applications of these estimators to high dimensional data, however, are questionable. This article studies, both theoretically and practically, a simple yet powerful smoothing approach to handle the high dimensional generalized regression model. Theoretically, a family of smoothing functions is provided, and the amount of smoothing necessary for efficient inference is carefully calculated. Practically, our study is motivated by an important and challenging scientific problem: decoding gene regulation by predicting transcription factors that bind to cis-regulatory elements. Applying our proposed method to this problem shows substantial improvement over the state-of-the-art alternative in real data." @default.
- W2962685313 created "2019-07-30" @default.
- W2962685313 creator A5020874196 @default.
- W2962685313 creator A5021528850 @default.
- W2962685313 creator A5042914019 @default.
- W2962685313 creator A5077329074 @default.
- W2962685313 date "2017-01-01" @default.
- W2962685313 modified "2023-09-23" @default.
- W2962685313 title "A provable smoothing approach for high dimensional generalized regression with applications in genomics" @default.
- W2962685313 hasPublicationYear "2017" @default.
- W2962685313 type Work @default.
- W2962685313 sameAs 2962685313 @default.
- W2962685313 citedByCount "0" @default.
- W2962685313 crossrefType "journal-article" @default.
- W2962685313 hasAuthorship W2962685313A5020874196 @default.
- W2962685313 hasAuthorship W2962685313A5021528850 @default.
- W2962685313 hasAuthorship W2962685313A5042914019 @default.
- W2962685313 hasAuthorship W2962685313A5077329074 @default.
- W2962685313 hasConcept C105795698 @default.
- W2962685313 hasConcept C11413529 @default.
- W2962685313 hasConcept C152877465 @default.
- W2962685313 hasConcept C154945302 @default.
- W2962685313 hasConcept C185429906 @default.
- W2962685313 hasConcept C2776214188 @default.
- W2962685313 hasConcept C28826006 @default.
- W2962685313 hasConcept C33923547 @default.
- W2962685313 hasConcept C3770464 @default.
- W2962685313 hasConcept C41008148 @default.
- W2962685313 hasConcept C41587187 @default.
- W2962685313 hasConcept C48921125 @default.
- W2962685313 hasConcept C83546350 @default.
- W2962685313 hasConceptScore W2962685313C105795698 @default.
- W2962685313 hasConceptScore W2962685313C11413529 @default.
- W2962685313 hasConceptScore W2962685313C152877465 @default.
- W2962685313 hasConceptScore W2962685313C154945302 @default.
- W2962685313 hasConceptScore W2962685313C185429906 @default.
- W2962685313 hasConceptScore W2962685313C2776214188 @default.
- W2962685313 hasConceptScore W2962685313C28826006 @default.
- W2962685313 hasConceptScore W2962685313C33923547 @default.
- W2962685313 hasConceptScore W2962685313C3770464 @default.
- W2962685313 hasConceptScore W2962685313C41008148 @default.
- W2962685313 hasConceptScore W2962685313C41587187 @default.
- W2962685313 hasConceptScore W2962685313C48921125 @default.
- W2962685313 hasConceptScore W2962685313C83546350 @default.
- W2962685313 hasOpenAccess W2962685313 @default.
- W2962685313 hasRelatedWork W153171230 @default.
- W2962685313 hasRelatedWork W1942126059 @default.
- W2962685313 hasRelatedWork W2770732279 @default.
- W2962685313 hasRelatedWork W2786668885 @default.
- W2962685313 hasRelatedWork W2941556100 @default.
- W2962685313 hasRelatedWork W2963886019 @default.
- W2962685313 hasRelatedWork W2969004177 @default.
- W2962685313 hasRelatedWork W2987189410 @default.
- W2962685313 hasRelatedWork W3039112373 @default.
- W2962685313 hasRelatedWork W3047457833 @default.
- W2962685313 hasRelatedWork W3104810320 @default.
- W2962685313 hasRelatedWork W3119877827 @default.
- W2962685313 hasRelatedWork W3125164209 @default.
- W2962685313 hasRelatedWork W3129096175 @default.
- W2962685313 hasRelatedWork W3155229782 @default.
- W2962685313 hasRelatedWork W3162799677 @default.
- W2962685313 hasRelatedWork W3197736511 @default.
- W2962685313 hasRelatedWork W31989032 @default.
- W2962685313 hasRelatedWork W3211320975 @default.
- W2962685313 hasRelatedWork W2884837180 @default.
- W2962685313 isParatext "false" @default.
- W2962685313 isRetracted "false" @default.
- W2962685313 magId "2962685313" @default.
- W2962685313 workType "article" @default.