Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962707560> ?p ?o ?g. }
- W2962707560 endingPage "A2523" @default.
- W2962707560 startingPage "A2494" @default.
- W2962707560 abstract "We present a computational framework for estimating the uncertainty in the numerical solution of linearized infinite-dimensional statistical inverse problems. We adopt the Bayesian inference formulation: given observational data and their uncertainty, the governing forward problem and its uncertainty, and a prior probability distribution describing uncertainty in the parameter field, find the posterior probability distribution over the parameter field. The prior must be chosen appropriately in order to guarantee well-posedness of the infinite-dimensional inverse problem and facilitate computation of the posterior. Furthermore, straightforward discretizations may not lead to convergent approximations of the infinite-dimensional problem. And finally, solution of the discretized inverse problem via explicit construction of the covariance matrix is prohibitive due to the need to solve the forward problem as many times as there are parameters. Our computational framework builds on the infinite-dimensional formulation proposed by Stuart [Acta Numer., 19 (2010), pp. 451--559] and incorporates a number of components aimed at ensuring a convergent discretization of the underlying infinite-dimensional inverse problem. The framework additionally incorporates algorithms for manipulating the prior, constructing a low rank approximation of the data-informed component of the posterior covariance operator, and exploring the posterior that together ensure scalability of the entire framework to very high parameter dimensions. We demonstrate this computational framework on the Bayesian solution of an inverse problem in three-dimensional global seismic wave propagation with hundreds of thousands of parameters." @default.
- W2962707560 created "2019-07-30" @default.
- W2962707560 creator A5008274019 @default.
- W2962707560 creator A5012373865 @default.
- W2962707560 creator A5023616683 @default.
- W2962707560 creator A5049331711 @default.
- W2962707560 date "2013-01-01" @default.
- W2962707560 modified "2023-10-14" @default.
- W2962707560 title "A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion" @default.
- W2962707560 cites W1545319692 @default.
- W2962707560 cites W1837874438 @default.
- W2962707560 cites W1847067072 @default.
- W2962707560 cites W1974372238 @default.
- W2962707560 cites W1979313559 @default.
- W2962707560 cites W2006251572 @default.
- W2962707560 cites W2014367637 @default.
- W2962707560 cites W2018349419 @default.
- W2962707560 cites W2025669066 @default.
- W2962707560 cites W2032117385 @default.
- W2962707560 cites W2042545789 @default.
- W2962707560 cites W2056984487 @default.
- W2962707560 cites W2062221814 @default.
- W2962707560 cites W2074836377 @default.
- W2962707560 cites W2082261407 @default.
- W2962707560 cites W2082959597 @default.
- W2962707560 cites W2098065241 @default.
- W2962707560 cites W2118065331 @default.
- W2962707560 cites W2146961539 @default.
- W2962707560 cites W2149498546 @default.
- W2962707560 cites W2156192189 @default.
- W2962707560 cites W2167943787 @default.
- W2962707560 cites W2326774159 @default.
- W2962707560 cites W2963777151 @default.
- W2962707560 cites W3106128350 @default.
- W2962707560 cites W4245445339 @default.
- W2962707560 doi "https://doi.org/10.1137/12089586x" @default.
- W2962707560 hasPublicationYear "2013" @default.
- W2962707560 type Work @default.
- W2962707560 sameAs 2962707560 @default.
- W2962707560 citedByCount "251" @default.
- W2962707560 countsByYear W29627075602013 @default.
- W2962707560 countsByYear W29627075602014 @default.
- W2962707560 countsByYear W29627075602015 @default.
- W2962707560 countsByYear W29627075602016 @default.
- W2962707560 countsByYear W29627075602017 @default.
- W2962707560 countsByYear W29627075602018 @default.
- W2962707560 countsByYear W29627075602019 @default.
- W2962707560 countsByYear W29627075602020 @default.
- W2962707560 countsByYear W29627075602021 @default.
- W2962707560 countsByYear W29627075602022 @default.
- W2962707560 countsByYear W29627075602023 @default.
- W2962707560 crossrefType "journal-article" @default.
- W2962707560 hasAuthorship W2962707560A5008274019 @default.
- W2962707560 hasAuthorship W2962707560A5012373865 @default.
- W2962707560 hasAuthorship W2962707560A5023616683 @default.
- W2962707560 hasAuthorship W2962707560A5049331711 @default.
- W2962707560 hasBestOaLocation W29627075602 @default.
- W2962707560 hasConcept C105795698 @default.
- W2962707560 hasConcept C107673813 @default.
- W2962707560 hasConcept C11413529 @default.
- W2962707560 hasConcept C126255220 @default.
- W2962707560 hasConcept C134306372 @default.
- W2962707560 hasConcept C135252773 @default.
- W2962707560 hasConcept C149441793 @default.
- W2962707560 hasConcept C177769412 @default.
- W2962707560 hasConcept C178650346 @default.
- W2962707560 hasConcept C28826006 @default.
- W2962707560 hasConcept C32230216 @default.
- W2962707560 hasConcept C33923547 @default.
- W2962707560 hasConcept C57830394 @default.
- W2962707560 hasConcept C73000952 @default.
- W2962707560 hasConceptScore W2962707560C105795698 @default.
- W2962707560 hasConceptScore W2962707560C107673813 @default.
- W2962707560 hasConceptScore W2962707560C11413529 @default.
- W2962707560 hasConceptScore W2962707560C126255220 @default.
- W2962707560 hasConceptScore W2962707560C134306372 @default.
- W2962707560 hasConceptScore W2962707560C135252773 @default.
- W2962707560 hasConceptScore W2962707560C149441793 @default.
- W2962707560 hasConceptScore W2962707560C177769412 @default.
- W2962707560 hasConceptScore W2962707560C178650346 @default.
- W2962707560 hasConceptScore W2962707560C28826006 @default.
- W2962707560 hasConceptScore W2962707560C32230216 @default.
- W2962707560 hasConceptScore W2962707560C33923547 @default.
- W2962707560 hasConceptScore W2962707560C57830394 @default.
- W2962707560 hasConceptScore W2962707560C73000952 @default.
- W2962707560 hasIssue "6" @default.
- W2962707560 hasLocation W29627075601 @default.
- W2962707560 hasLocation W29627075602 @default.
- W2962707560 hasLocation W29627075603 @default.
- W2962707560 hasOpenAccess W2962707560 @default.
- W2962707560 hasPrimaryLocation W29627075601 @default.
- W2962707560 hasRelatedWork W1608790930 @default.
- W2962707560 hasRelatedWork W2007093222 @default.
- W2962707560 hasRelatedWork W2145178290 @default.
- W2962707560 hasRelatedWork W2611832276 @default.
- W2962707560 hasRelatedWork W2964314781 @default.
- W2962707560 hasRelatedWork W3006565005 @default.
- W2962707560 hasRelatedWork W3124172274 @default.