Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962719622> ?p ?o ?g. }
- W2962719622 endingPage "4095" @default.
- W2962719622 startingPage "4062" @default.
- W2962719622 abstract "Numerous learning problems that contain exploration, such as experiment design, multiarm bandits, online routing, search result aggregation and many more, have been studied extensively in isolation. In this paper we consider a generic and efficiently computable method for action space exploration based on convex geometry.We define a novel geometric notion of an exploration mechanism with low variance called volumetric spanners, and give efficient algorithms to construct such spanners. We describe applications of this mechanism to the problem of optimal experiment design and the general framework for decision making under uncertainty of bandit linear optimization. For the latter we give efficient and near-optimal regret algorithm over general convex sets. Previously such results were known only for specific convex sets, or under special conditions such as the existence of an efficient self-concordant barrier for the underlying set." @default.
- W2962719622 created "2019-07-30" @default.
- W2962719622 creator A5024431603 @default.
- W2962719622 creator A5048818669 @default.
- W2962719622 date "2016-01-01" @default.
- W2962719622 modified "2023-09-25" @default.
- W2962719622 title "Volumetric spanners: an efficient exploration basis for learning" @default.
- W2962719622 cites W1480930109 @default.
- W2962719622 cites W1484867920 @default.
- W2962719622 cites W1514707997 @default.
- W2962719622 cites W1528133536 @default.
- W2962719622 cites W1553598118 @default.
- W2962719622 cites W1621376568 @default.
- W2962719622 cites W1849095486 @default.
- W2962719622 cites W187211397 @default.
- W2962719622 cites W1967134148 @default.
- W2962719622 cites W1973380555 @default.
- W2962719622 cites W1979428970 @default.
- W2962719622 cites W2012731843 @default.
- W2962719622 cites W2027560232 @default.
- W2962719622 cites W2030644212 @default.
- W2962719622 cites W2049934117 @default.
- W2962719622 cites W2051259245 @default.
- W2962719622 cites W2056707879 @default.
- W2962719622 cites W2064380440 @default.
- W2962719622 cites W2067081844 @default.
- W2962719622 cites W2087026810 @default.
- W2962719622 cites W2120745256 @default.
- W2962719622 cites W2122299160 @default.
- W2962719622 cites W2132876566 @default.
- W2962719622 cites W2138663260 @default.
- W2962719622 cites W2143521632 @default.
- W2962719622 cites W2148825261 @default.
- W2962719622 cites W2160372561 @default.
- W2962719622 cites W2285210450 @default.
- W2962719622 cites W2311985995 @default.
- W2962719622 cites W2396213570 @default.
- W2962719622 cites W2407979294 @default.
- W2962719622 cites W2513180554 @default.
- W2962719622 cites W2914156981 @default.
- W2962719622 cites W2963308846 @default.
- W2962719622 cites W2963670858 @default.
- W2962719622 cites W3100363164 @default.
- W2962719622 cites W3102654945 @default.
- W2962719622 cites W50486269 @default.
- W2962719622 hasPublicationYear "2016" @default.
- W2962719622 type Work @default.
- W2962719622 sameAs 2962719622 @default.
- W2962719622 citedByCount "12" @default.
- W2962719622 countsByYear W29627196222014 @default.
- W2962719622 countsByYear W29627196222015 @default.
- W2962719622 countsByYear W29627196222018 @default.
- W2962719622 countsByYear W29627196222019 @default.
- W2962719622 countsByYear W29627196222020 @default.
- W2962719622 crossrefType "journal-article" @default.
- W2962719622 hasAuthorship W2962719622A5024431603 @default.
- W2962719622 hasAuthorship W2962719622A5048818669 @default.
- W2962719622 hasConcept C111919701 @default.
- W2962719622 hasConcept C112680207 @default.
- W2962719622 hasConcept C119857082 @default.
- W2962719622 hasConcept C12426560 @default.
- W2962719622 hasConcept C126255220 @default.
- W2962719622 hasConcept C177264268 @default.
- W2962719622 hasConcept C199360897 @default.
- W2962719622 hasConcept C2524010 @default.
- W2962719622 hasConcept C2775941552 @default.
- W2962719622 hasConcept C2778572836 @default.
- W2962719622 hasConcept C2780801425 @default.
- W2962719622 hasConcept C33923547 @default.
- W2962719622 hasConcept C41008148 @default.
- W2962719622 hasConcept C50817715 @default.
- W2962719622 hasConcept C80444323 @default.
- W2962719622 hasConcept C86803240 @default.
- W2962719622 hasConcept C89423630 @default.
- W2962719622 hasConceptScore W2962719622C111919701 @default.
- W2962719622 hasConceptScore W2962719622C112680207 @default.
- W2962719622 hasConceptScore W2962719622C119857082 @default.
- W2962719622 hasConceptScore W2962719622C12426560 @default.
- W2962719622 hasConceptScore W2962719622C126255220 @default.
- W2962719622 hasConceptScore W2962719622C177264268 @default.
- W2962719622 hasConceptScore W2962719622C199360897 @default.
- W2962719622 hasConceptScore W2962719622C2524010 @default.
- W2962719622 hasConceptScore W2962719622C2775941552 @default.
- W2962719622 hasConceptScore W2962719622C2778572836 @default.
- W2962719622 hasConceptScore W2962719622C2780801425 @default.
- W2962719622 hasConceptScore W2962719622C33923547 @default.
- W2962719622 hasConceptScore W2962719622C41008148 @default.
- W2962719622 hasConceptScore W2962719622C50817715 @default.
- W2962719622 hasConceptScore W2962719622C80444323 @default.
- W2962719622 hasConceptScore W2962719622C86803240 @default.
- W2962719622 hasConceptScore W2962719622C89423630 @default.
- W2962719622 hasIssue "1" @default.
- W2962719622 hasOpenAccess W2962719622 @default.
- W2962719622 hasRelatedWork W1529849411 @default.
- W2962719622 hasRelatedWork W1582185751 @default.
- W2962719622 hasRelatedWork W1973312922 @default.
- W2962719622 hasRelatedWork W2004171193 @default.
- W2962719622 hasRelatedWork W2077902449 @default.