Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962728181> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2962728181 endingPage "41" @default.
- W2962728181 startingPage "36" @default.
- W2962728181 abstract "Despite the somewhat different techniques used in developing search engines and recommender systems, they both follow the same goal: helping people to get the information they need at the right time. Due to this common goal, search and recommendation models can potentially benefit from each other. The recent advances in neural network technologies make them effective and easily extendable for various tasks, including retrieval and recommendation. This raises the possibility of jointly modeling and optimizing search ranking and recommendation algorithms, with potential benefits to both. In this paper, we present theoretical and practical reasons to motivate joint modeling of search and recommendation as a research direction. We propose a general framework that simultaneously learns a retrieval model and a recommendation model by optimizing a joint loss function. Our preliminary results on a dataset of product data indicate that the proposed joint modeling substantially outperforms the retrieval and recommendation models trained independently. We list a number of future directions for this line of research that can potentially lead to development of state-of-the-art search and recommendation models." @default.
- W2962728181 created "2019-07-30" @default.
- W2962728181 creator A5008885979 @default.
- W2962728181 creator A5047094005 @default.
- W2962728181 date "2018-01-01" @default.
- W2962728181 modified "2023-09-23" @default.
- W2962728181 title "Joint Modeling and Optimization of Search and Recommendation." @default.
- W2962728181 hasPublicationYear "2018" @default.
- W2962728181 type Work @default.
- W2962728181 sameAs 2962728181 @default.
- W2962728181 citedByCount "1" @default.
- W2962728181 countsByYear W29627281812019 @default.
- W2962728181 crossrefType "journal-article" @default.
- W2962728181 hasAuthorship W2962728181A5008885979 @default.
- W2962728181 hasAuthorship W2962728181A5047094005 @default.
- W2962728181 hasConcept C119857082 @default.
- W2962728181 hasConcept C124101348 @default.
- W2962728181 hasConcept C127413603 @default.
- W2962728181 hasConcept C154945302 @default.
- W2962728181 hasConcept C170154142 @default.
- W2962728181 hasConcept C18555067 @default.
- W2962728181 hasConcept C189430467 @default.
- W2962728181 hasConcept C23123220 @default.
- W2962728181 hasConcept C2524010 @default.
- W2962728181 hasConcept C33923547 @default.
- W2962728181 hasConcept C41008148 @default.
- W2962728181 hasConcept C557471498 @default.
- W2962728181 hasConcept C90673727 @default.
- W2962728181 hasConcept C97854310 @default.
- W2962728181 hasConceptScore W2962728181C119857082 @default.
- W2962728181 hasConceptScore W2962728181C124101348 @default.
- W2962728181 hasConceptScore W2962728181C127413603 @default.
- W2962728181 hasConceptScore W2962728181C154945302 @default.
- W2962728181 hasConceptScore W2962728181C170154142 @default.
- W2962728181 hasConceptScore W2962728181C18555067 @default.
- W2962728181 hasConceptScore W2962728181C189430467 @default.
- W2962728181 hasConceptScore W2962728181C23123220 @default.
- W2962728181 hasConceptScore W2962728181C2524010 @default.
- W2962728181 hasConceptScore W2962728181C33923547 @default.
- W2962728181 hasConceptScore W2962728181C41008148 @default.
- W2962728181 hasConceptScore W2962728181C557471498 @default.
- W2962728181 hasConceptScore W2962728181C90673727 @default.
- W2962728181 hasConceptScore W2962728181C97854310 @default.
- W2962728181 hasLocation W29627281811 @default.
- W2962728181 hasOpenAccess W2962728181 @default.
- W2962728181 hasPrimaryLocation W29627281811 @default.
- W2962728181 hasRelatedWork W2228525109 @default.
- W2962728181 hasRelatedWork W2558681166 @default.
- W2962728181 hasRelatedWork W2601592407 @default.
- W2962728181 hasRelatedWork W2754239978 @default.
- W2962728181 hasRelatedWork W2755210032 @default.
- W2962728181 hasRelatedWork W2884789176 @default.
- W2962728181 hasRelatedWork W2890508334 @default.
- W2962728181 hasRelatedWork W2895557722 @default.
- W2962728181 hasRelatedWork W2932603614 @default.
- W2962728181 hasRelatedWork W3031167136 @default.
- W2962728181 hasRelatedWork W3036950174 @default.
- W2962728181 hasRelatedWork W3090432216 @default.
- W2962728181 hasRelatedWork W3119405383 @default.
- W2962728181 hasRelatedWork W3134533764 @default.
- W2962728181 hasRelatedWork W3163450606 @default.
- W2962728181 hasRelatedWork W3164213197 @default.
- W2962728181 hasRelatedWork W3210547226 @default.
- W2962728181 hasRelatedWork W2243591049 @default.
- W2962728181 hasRelatedWork W2407096033 @default.
- W2962728181 hasRelatedWork W2920864801 @default.
- W2962728181 isParatext "false" @default.
- W2962728181 isRetracted "false" @default.
- W2962728181 magId "2962728181" @default.
- W2962728181 workType "article" @default.