Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962730002> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2962730002 endingPage "5374" @default.
- W2962730002 startingPage "5355" @default.
- W2962730002 abstract "For <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a cofinite Kleinian group acting on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper H cubed> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {H}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we study the prime geodesic theorem on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M equals normal upper Gamma minus double-struck upper H cubed> <mml:semantics> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>=</mml:mo> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mi class=MJX-variant mathvariant=normal>∖<!-- ∖ --></mml:mi> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>H</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>M=Gamma backslash mathbb {H}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which asks about the asymptotic behavior of lengths of primitive closed geodesics (prime geodesics) on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E Subscript normal upper Gamma Baseline left-parenthesis upper X right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>E_{Gamma }(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the error in the counting of prime geodesics with length at most <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=log upper X> <mml:semantics> <mml:mrow> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>log X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For the Picard manifold, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma equals normal upper P normal upper S normal upper L left-parenthesis 2 comma double-struck upper Z left-bracket i right-bracket right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>P</mml:mi> <mml:mi mathvariant=normal>S</mml:mi> <mml:mi mathvariant=normal>L</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mo stretchy=false>[</mml:mo> <mml:mi>i</mml:mi> <mml:mo stretchy=false>]</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>Gamma =mathrm {PSL}(2,mathbb {Z}[i])</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we improve the classical bound of Sarnak, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E Subscript normal upper Gamma Baseline left-parenthesis upper X right-parenthesis equals upper O left-parenthesis upper X Superscript 5 slash 3 plus epsilon Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>O</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>5</mml:mn> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>E_{Gamma }(X)=O(X^{5/3+epsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E Subscript normal upper Gamma Baseline left-parenthesis upper X right-parenthesis equals upper O left-parenthesis upper X Superscript 13 slash 8 plus epsilon Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>O</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>13</mml:mn> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>8</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>E_{Gamma }(X)=O(X^{13/8+epsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the process we obtain a mean subconvexity estimate for the Rankin–Selberg <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=application/x-tex>L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function attached to Maass–Hecke cusp forms. We also investigate the second moment of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E Subscript normal upper Gamma Baseline left-parenthesis upper X right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>E_{Gamma }(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a general cofinite group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we show that it is bounded by <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper O left-parenthesis upper X Superscript 16 slash 5 plus epsilon Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>16</mml:mn> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>5</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>O(X^{16/5+epsilon })</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2962730002 created "2019-07-30" @default.
- W2962730002 creator A5023447486 @default.
- W2962730002 creator A5048625658 @default.
- W2962730002 creator A5052901272 @default.
- W2962730002 creator A5067364708 @default.
- W2962730002 creator A5083288834 @default.
- W2962730002 date "2018-12-28" @default.
- W2962730002 modified "2023-09-24" @default.
- W2962730002 title "Prime geodesic theorem in the 3-dimensional hyperbolic space" @default.
- W2962730002 cites W1496415642 @default.
- W2962730002 cites W1528690281 @default.
- W2962730002 cites W1705874543 @default.
- W2962730002 cites W1966331339 @default.
- W2962730002 cites W1997741475 @default.
- W2962730002 cites W2013991742 @default.
- W2962730002 cites W2020738119 @default.
- W2962730002 cites W2055972795 @default.
- W2962730002 cites W2083975621 @default.
- W2962730002 cites W2088296990 @default.
- W2962730002 cites W2150741020 @default.
- W2962730002 cites W2232906636 @default.
- W2962730002 cites W2269314205 @default.
- W2962730002 cites W2327307049 @default.
- W2962730002 cites W2493043470 @default.
- W2962730002 cites W2531580604 @default.
- W2962730002 cites W2583646051 @default.
- W2962730002 cites W3098157218 @default.
- W2962730002 cites W36666398 @default.
- W2962730002 cites W4234295474 @default.
- W2962730002 cites W1746533159 @default.
- W2962730002 doi "https://doi.org/10.1090/tran/7720" @default.
- W2962730002 hasPublicationYear "2018" @default.
- W2962730002 type Work @default.
- W2962730002 sameAs 2962730002 @default.
- W2962730002 citedByCount "15" @default.
- W2962730002 countsByYear W29627300022018 @default.
- W2962730002 countsByYear W29627300022019 @default.
- W2962730002 countsByYear W29627300022020 @default.
- W2962730002 countsByYear W29627300022021 @default.
- W2962730002 crossrefType "journal-article" @default.
- W2962730002 hasAuthorship W2962730002A5023447486 @default.
- W2962730002 hasAuthorship W2962730002A5048625658 @default.
- W2962730002 hasAuthorship W2962730002A5052901272 @default.
- W2962730002 hasAuthorship W2962730002A5067364708 @default.
- W2962730002 hasAuthorship W2962730002A5083288834 @default.
- W2962730002 hasBestOaLocation W29627300021 @default.
- W2962730002 hasConcept C11413529 @default.
- W2962730002 hasConcept C127313418 @default.
- W2962730002 hasConcept C151730666 @default.
- W2962730002 hasConcept C154945302 @default.
- W2962730002 hasConcept C165818556 @default.
- W2962730002 hasConcept C2524010 @default.
- W2962730002 hasConcept C2777299769 @default.
- W2962730002 hasConcept C33923547 @default.
- W2962730002 hasConcept C41008148 @default.
- W2962730002 hasConceptScore W2962730002C11413529 @default.
- W2962730002 hasConceptScore W2962730002C127313418 @default.
- W2962730002 hasConceptScore W2962730002C151730666 @default.
- W2962730002 hasConceptScore W2962730002C154945302 @default.
- W2962730002 hasConceptScore W2962730002C165818556 @default.
- W2962730002 hasConceptScore W2962730002C2524010 @default.
- W2962730002 hasConceptScore W2962730002C2777299769 @default.
- W2962730002 hasConceptScore W2962730002C33923547 @default.
- W2962730002 hasConceptScore W2962730002C41008148 @default.
- W2962730002 hasFunder F4320334678 @default.
- W2962730002 hasIssue "8" @default.
- W2962730002 hasLocation W29627300021 @default.
- W2962730002 hasLocation W29627300022 @default.
- W2962730002 hasOpenAccess W2962730002 @default.
- W2962730002 hasPrimaryLocation W29627300021 @default.
- W2962730002 hasRelatedWork W1974584795 @default.
- W2962730002 hasRelatedWork W2057074531 @default.
- W2962730002 hasRelatedWork W2071383071 @default.
- W2962730002 hasRelatedWork W2123357356 @default.
- W2962730002 hasRelatedWork W2155779374 @default.
- W2962730002 hasRelatedWork W2349865494 @default.
- W2962730002 hasRelatedWork W2963842481 @default.
- W2962730002 hasRelatedWork W2998142867 @default.
- W2962730002 hasRelatedWork W3101673024 @default.
- W2962730002 hasRelatedWork W3107474891 @default.
- W2962730002 hasVolume "372" @default.
- W2962730002 isParatext "false" @default.
- W2962730002 isRetracted "false" @default.
- W2962730002 magId "2962730002" @default.
- W2962730002 workType "article" @default.