Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962730912> ?p ?o ?g. }
- W2962730912 endingPage "293" @default.
- W2962730912 startingPage "249" @default.
- W2962730912 abstract "The Gaussian cluster-weighted model (CWM) is a mixture of regression models with random covariates that allows for flexible clustering of a random vector composed of response variables and covariates. In each mixture component, a Gaussian distribution is adopted for both the covariates and the responses given the covariates. To make the approach robust with respect to the presence of mildly atypical observations, the contaminated Gaussian CWM is introduced. In addition to the parameters of the Gaussian CWM, each mixture component has a parameter controlling the proportion of outliers, one controlling the proportion of leverage points, one specifying the degree of contamination with respect to the response variables, and another specifying the degree of contamination with respect to the covariates. Crucially, these parameters do not have to be specified a priori, adding flexibility to the approach. Furthermore, once the model is estimated and the observations are assigned to the components, a finer intra-group classification in typical points, (mild) outliers, good leverage points, and bad leverage points—concepts of primary importance in robust regression analysis—can be directly obtained. Relations with other mixture-based contaminated models are analyzed, identifiability conditions are provided, an expectation-conditional maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients are evaluated through Monte Carlo experiments and compared with other procedures. A sensitivity study is also conducted based on a real data set." @default.
- W2962730912 created "2019-07-30" @default.
- W2962730912 creator A5009939605 @default.
- W2962730912 creator A5069386158 @default.
- W2962730912 date "2017-06-20" @default.
- W2962730912 modified "2023-09-24" @default.
- W2962730912 title "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model" @default.
- W2962730912 cites W1966129222 @default.
- W2962730912 cites W1966322875 @default.
- W2962730912 cites W1967639437 @default.
- W2962730912 cites W1975120776 @default.
- W2962730912 cites W1980503918 @default.
- W2962730912 cites W1984526963 @default.
- W2962730912 cites W1985622505 @default.
- W2962730912 cites W1994241229 @default.
- W2962730912 cites W1994296756 @default.
- W2962730912 cites W2016670387 @default.
- W2962730912 cites W2016755865 @default.
- W2962730912 cites W2019486793 @default.
- W2962730912 cites W2022989251 @default.
- W2962730912 cites W2023163585 @default.
- W2962730912 cites W2023689787 @default.
- W2962730912 cites W2026538377 @default.
- W2962730912 cites W2038371718 @default.
- W2962730912 cites W2049351438 @default.
- W2962730912 cites W2049419088 @default.
- W2962730912 cites W2068302187 @default.
- W2962730912 cites W2082503527 @default.
- W2962730912 cites W2085080020 @default.
- W2962730912 cites W2087101057 @default.
- W2962730912 cites W2088065495 @default.
- W2962730912 cites W2089952084 @default.
- W2962730912 cites W2090268867 @default.
- W2962730912 cites W2101974632 @default.
- W2962730912 cites W2108832093 @default.
- W2962730912 cites W2110656936 @default.
- W2962730912 cites W2112905646 @default.
- W2962730912 cites W2130444042 @default.
- W2962730912 cites W2135384158 @default.
- W2962730912 cites W2150230417 @default.
- W2962730912 cites W2152027663 @default.
- W2962730912 cites W2154055962 @default.
- W2962730912 cites W2162941164 @default.
- W2962730912 cites W2168175751 @default.
- W2962730912 cites W2168445269 @default.
- W2962730912 cites W2180384296 @default.
- W2962730912 cites W2208193594 @default.
- W2962730912 cites W2261930756 @default.
- W2962730912 cites W2408832908 @default.
- W2962730912 cites W2461082701 @default.
- W2962730912 cites W2466214595 @default.
- W2962730912 cites W2488678869 @default.
- W2962730912 cites W2498094064 @default.
- W2962730912 cites W2520316656 @default.
- W2962730912 cites W2524681876 @default.
- W2962730912 cites W2551174787 @default.
- W2962730912 cites W2770610745 @default.
- W2962730912 cites W2963461702 @default.
- W2962730912 cites W2963496995 @default.
- W2962730912 cites W2963702653 @default.
- W2962730912 cites W3098381019 @default.
- W2962730912 cites W3103194895 @default.
- W2962730912 cites W4243563432 @default.
- W2962730912 cites W4256431090 @default.
- W2962730912 cites W48439977 @default.
- W2962730912 cites W749220623 @default.
- W2962730912 cites W1973551391 @default.
- W2962730912 doi "https://doi.org/10.1007/s00357-017-9234-x" @default.
- W2962730912 hasPublicationYear "2017" @default.
- W2962730912 type Work @default.
- W2962730912 sameAs 2962730912 @default.
- W2962730912 citedByCount "68" @default.
- W2962730912 countsByYear W29627309122014 @default.
- W2962730912 countsByYear W29627309122017 @default.
- W2962730912 countsByYear W29627309122018 @default.
- W2962730912 countsByYear W29627309122019 @default.
- W2962730912 countsByYear W29627309122020 @default.
- W2962730912 countsByYear W29627309122021 @default.
- W2962730912 countsByYear W29627309122022 @default.
- W2962730912 countsByYear W29627309122023 @default.
- W2962730912 crossrefType "journal-article" @default.
- W2962730912 hasAuthorship W2962730912A5009939605 @default.
- W2962730912 hasAuthorship W2962730912A5069386158 @default.
- W2962730912 hasBestOaLocation W29627309122 @default.
- W2962730912 hasConcept C105795698 @default.
- W2962730912 hasConcept C124101348 @default.
- W2962730912 hasConcept C147597530 @default.
- W2962730912 hasConcept C152877465 @default.
- W2962730912 hasConcept C153180895 @default.
- W2962730912 hasConcept C154945302 @default.
- W2962730912 hasConcept C163716315 @default.
- W2962730912 hasConcept C164866538 @default.
- W2962730912 hasConcept C166550679 @default.
- W2962730912 hasConcept C185592680 @default.
- W2962730912 hasConcept C199360897 @default.
- W2962730912 hasConcept C33923547 @default.
- W2962730912 hasConcept C41008148 @default.
- W2962730912 hasConcept C61224824 @default.