Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962737777> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2962737777 endingPage "8422" @default.
- W2962737777 startingPage "8399" @default.
- W2962737777 abstract "We analyze four-dimensional symplectic manifolds of type <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X equals upper S Superscript 1 Baseline times upper M cubed> <mml:semantics> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>X=S^1 times M^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M cubed> <mml:semantics> <mml:msup> <mml:mi>M</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>M^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an open <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=3> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=application/x-tex>3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifold admitting inequivalent fibrations leading to inequivalent symplectic structures on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For the case where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M cubed subset-of upper S cubed> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>M</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>M^3 subset S^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the complement of a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=4> <mml:semantics> <mml:mn>4</mml:mn> <mml:annotation encoding=application/x-tex>4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-component link constructed by McMullen-Taubes, we provide a general algorithm for computing the monodromy of the fibrations explicitly. We use this algorithm to show that certain inequivalent symplectic structures are distinguished by the dimensions of the primitive cohomologies of differential forms on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also calculate the primitive cohomologies on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a class of open <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=3> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=application/x-tex>3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds that are complements of a family of fibered graph links in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S cubed> <mml:semantics> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>S^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this case, we show that there exist pairs of symplectic forms on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, arising from either equivalent or inequivalent pairs of fibrations on the link complement, that have different dimensions of the primitive cohomologies." @default.
- W2962737777 created "2019-07-30" @default.
- W2962737777 creator A5039926530 @default.
- W2962737777 creator A5043918315 @default.
- W2962737777 creator A5080555535 @default.
- W2962737777 date "2022-10-03" @default.
- W2962737777 modified "2023-10-13" @default.
- W2962737777 title "Symplectic structures with non-isomorphic primitive cohomology on open 4-manifolds" @default.
- W2962737777 cites W1992349191 @default.
- W2962737777 cites W2006823362 @default.
- W2962737777 cites W2053015793 @default.
- W2962737777 cites W2928597729 @default.
- W2962737777 cites W3102564067 @default.
- W2962737777 doi "https://doi.org/10.1090/tran/8747" @default.
- W2962737777 hasPublicationYear "2022" @default.
- W2962737777 type Work @default.
- W2962737777 sameAs 2962737777 @default.
- W2962737777 citedByCount "0" @default.
- W2962737777 crossrefType "journal-article" @default.
- W2962737777 hasAuthorship W2962737777A5039926530 @default.
- W2962737777 hasAuthorship W2962737777A5043918315 @default.
- W2962737777 hasAuthorship W2962737777A5080555535 @default.
- W2962737777 hasBestOaLocation W29627377771 @default.
- W2962737777 hasConcept C11413529 @default.
- W2962737777 hasConcept C154945302 @default.
- W2962737777 hasConcept C2776321320 @default.
- W2962737777 hasConcept C41008148 @default.
- W2962737777 hasConceptScore W2962737777C11413529 @default.
- W2962737777 hasConceptScore W2962737777C154945302 @default.
- W2962737777 hasConceptScore W2962737777C2776321320 @default.
- W2962737777 hasConceptScore W2962737777C41008148 @default.
- W2962737777 hasFunder F4320306164 @default.
- W2962737777 hasIssue "12" @default.
- W2962737777 hasLocation W29627377771 @default.
- W2962737777 hasLocation W29627377772 @default.
- W2962737777 hasOpenAccess W2962737777 @default.
- W2962737777 hasPrimaryLocation W29627377771 @default.
- W2962737777 hasRelatedWork W1490908374 @default.
- W2962737777 hasRelatedWork W151193258 @default.
- W2962737777 hasRelatedWork W1529400504 @default.
- W2962737777 hasRelatedWork W1607472309 @default.
- W2962737777 hasRelatedWork W1871911958 @default.
- W2962737777 hasRelatedWork W1892467659 @default.
- W2962737777 hasRelatedWork W2808586768 @default.
- W2962737777 hasRelatedWork W2998403542 @default.
- W2962737777 hasRelatedWork W3107474891 @default.
- W2962737777 hasRelatedWork W38394648 @default.
- W2962737777 hasVolume "375" @default.
- W2962737777 isParatext "false" @default.
- W2962737777 isRetracted "false" @default.
- W2962737777 magId "2962737777" @default.
- W2962737777 workType "article" @default.