Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962740177> ?p ?o ?g. }
- W2962740177 endingPage "1959" @default.
- W2962740177 startingPage "1946" @default.
- W2962740177 abstract "In the last few years, there has been considerable interest in scene parsing. This task consists of assigning a predefined class label to each pixel (or pre-segmented region) in an image. To best address the complexity challenge of this task, first, we propose a new geometric retrieval strategy to select nearest neighbors from a database containing fully segmented and annotated images. Then, we introduce a novel and simple energy-minimization model. The proposed cost function of this model combines efficiently different global nonparametric semantic likelihood energy terms. These terms are computed from the (pre-)segmented regions of the (query) image and their structural properties (location, texture, color, context, and shape). Different from the traditional approaches, we use a simple and local optimization procedure derived from the iterative conditional modes algorithm to optimize our energy-based model. Experimental results on two challenging datasets: 1) microsoft research Cambridge dataset and 2) Stanford background dataset demonstrate the feasibility and the success of the proposed approach. Compared to existing annotation methods that require training classifiers for each object and learning many parameters, our method is easy to implement, has a few parameters, and combines different criteria." @default.
- W2962740177 created "2019-07-30" @default.
- W2962740177 creator A5025607689 @default.
- W2962740177 creator A5086260354 @default.
- W2962740177 date "2019-08-01" @default.
- W2962740177 modified "2023-10-01" @default.
- W2962740177 title "MC-SSM: Nonparametric Semantic Image Segmentation With the ICM Algorithm" @default.
- W2962740177 cites W1221285097 @default.
- W2962740177 cites W1528789833 @default.
- W2962740177 cites W15327946 @default.
- W2962740177 cites W1542723449 @default.
- W2962740177 cites W1554544485 @default.
- W2962740177 cites W1581592866 @default.
- W2962740177 cites W1582211988 @default.
- W2962740177 cites W1962739028 @default.
- W2962740177 cites W1965631193 @default.
- W2962740177 cites W1981667613 @default.
- W2962740177 cites W1986834574 @default.
- W2962740177 cites W2002260165 @default.
- W2962740177 cites W2004509105 @default.
- W2962740177 cites W2017313218 @default.
- W2962740177 cites W2022508996 @default.
- W2962740177 cites W2031489346 @default.
- W2962740177 cites W2050564777 @default.
- W2962740177 cites W2054279472 @default.
- W2962740177 cites W2062560716 @default.
- W2962740177 cites W2083053289 @default.
- W2962740177 cites W2083597815 @default.
- W2962740177 cites W2090518410 @default.
- W2962740177 cites W2110764733 @default.
- W2962740177 cites W2113940248 @default.
- W2962740177 cites W2118246710 @default.
- W2962740177 cites W2121927366 @default.
- W2962740177 cites W2125310925 @default.
- W2962740177 cites W2129259959 @default.
- W2962740177 cites W2133963057 @default.
- W2962740177 cites W2157358983 @default.
- W2962740177 cites W2162339969 @default.
- W2962740177 cites W2163352848 @default.
- W2962740177 cites W2183182206 @default.
- W2962740177 cites W2319083191 @default.
- W2962740177 cites W2331809639 @default.
- W2962740177 cites W2339419198 @default.
- W2962740177 cites W2395611524 @default.
- W2962740177 cites W2399150071 @default.
- W2962740177 cites W2412782625 @default.
- W2962740177 cites W2510660416 @default.
- W2962740177 cites W2536208356 @default.
- W2962740177 cites W2545985378 @default.
- W2962740177 cites W2552414813 @default.
- W2962740177 cites W2555182955 @default.
- W2962740177 cites W2560446917 @default.
- W2962740177 cites W2563705555 @default.
- W2962740177 cites W2563949017 @default.
- W2962740177 cites W2564762251 @default.
- W2962740177 cites W2604486661 @default.
- W2962740177 cites W2736076129 @default.
- W2962740177 cites W2745410201 @default.
- W2962740177 cites W2746237317 @default.
- W2962740177 cites W2765906447 @default.
- W2962740177 cites W2766692216 @default.
- W2962740177 cites W2792455544 @default.
- W2962740177 cites W2963108253 @default.
- W2962740177 cites W2963342403 @default.
- W2962740177 cites W3100256308 @default.
- W2962740177 cites W38955421 @default.
- W2962740177 cites W4233638154 @default.
- W2962740177 cites W4245648254 @default.
- W2962740177 doi "https://doi.org/10.1109/tmm.2019.2891418" @default.
- W2962740177 hasPublicationYear "2019" @default.
- W2962740177 type Work @default.
- W2962740177 sameAs 2962740177 @default.
- W2962740177 citedByCount "6" @default.
- W2962740177 countsByYear W29627401772019 @default.
- W2962740177 countsByYear W29627401772021 @default.
- W2962740177 countsByYear W29627401772022 @default.
- W2962740177 crossrefType "journal-article" @default.
- W2962740177 hasAuthorship W2962740177A5025607689 @default.
- W2962740177 hasAuthorship W2962740177A5086260354 @default.
- W2962740177 hasConcept C102366305 @default.
- W2962740177 hasConcept C105795698 @default.
- W2962740177 hasConcept C11413529 @default.
- W2962740177 hasConcept C124504099 @default.
- W2962740177 hasConcept C153180895 @default.
- W2962740177 hasConcept C154945302 @default.
- W2962740177 hasConcept C31972630 @default.
- W2962740177 hasConcept C33923547 @default.
- W2962740177 hasConcept C41008148 @default.
- W2962740177 hasConcept C65885262 @default.
- W2962740177 hasConcept C89600930 @default.
- W2962740177 hasConceptScore W2962740177C102366305 @default.
- W2962740177 hasConceptScore W2962740177C105795698 @default.
- W2962740177 hasConceptScore W2962740177C11413529 @default.
- W2962740177 hasConceptScore W2962740177C124504099 @default.
- W2962740177 hasConceptScore W2962740177C153180895 @default.
- W2962740177 hasConceptScore W2962740177C154945302 @default.
- W2962740177 hasConceptScore W2962740177C31972630 @default.
- W2962740177 hasConceptScore W2962740177C33923547 @default.