Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962753812> ?p ?o ?g. }
- W2962753812 abstract "In this paper we consider the Good - Walker approach for the diffractive excitation and updated the Miettinen -- Pumplin (MP) model for $pp/bar{p}p$ collisions considering the recent LHC data for the total and elastic $pp$ cross sections. The behavior of the total, elastic and diffractive cross sections is analyzed and predictions for the energies of Run 3 of the LHC and those of the Cosmic Rays experiments are derived. Our results demonstrate that the MP model is able to describe the current data and that it implies that the cross section for the diffraction excitation in $pp$ collisions is almost constant in the energy range probed by the LHC and slowly decreases at higher energies. Our results indicate that the Pumplin bound is not reached at the LHC and Cosmic Ray energies. Moreover, the implications of the diffractive excitation in $pA$ collisions is discussed. In particular, the MP model, constrained by the $pp$ data, is used to derive the main quantities present in the treatment of the diffractive excitation in $pA$ collisions. Predictions for the total, elastic and diffractive $pA$ cross sections are presented considering different nuclei. We demonstrate that the effect of fluctuations decreases at larger energies and heavier nuclei. The energy dependence of the diffractive excitation cross section in $pA$ collisions is estimated for different nuclei and compared with the predictions for the proton dissociation induced by photon interactions." @default.
- W2962753812 created "2019-07-30" @default.
- W2962753812 creator A5012801112 @default.
- W2962753812 creator A5037579101 @default.
- W2962753812 creator A5091439502 @default.
- W2962753812 date "2019-07-18" @default.
- W2962753812 modified "2023-09-24" @default.
- W2962753812 title "Diffractive excitation in pp and pA collisions at high energies" @default.
- W2962753812 cites W119412785 @default.
- W2962753812 cites W1517621352 @default.
- W2962753812 cites W1563645995 @default.
- W2962753812 cites W1751552836 @default.
- W2962753812 cites W1955298209 @default.
- W2962753812 cites W1963720269 @default.
- W2962753812 cites W1964512472 @default.
- W2962753812 cites W1980110567 @default.
- W2962753812 cites W1981614859 @default.
- W2962753812 cites W1984361070 @default.
- W2962753812 cites W1985022527 @default.
- W2962753812 cites W1987893839 @default.
- W2962753812 cites W1991379236 @default.
- W2962753812 cites W1993377356 @default.
- W2962753812 cites W1994403620 @default.
- W2962753812 cites W2005066149 @default.
- W2962753812 cites W2005608535 @default.
- W2962753812 cites W2006236974 @default.
- W2962753812 cites W2006973939 @default.
- W2962753812 cites W2007908802 @default.
- W2962753812 cites W2011670125 @default.
- W2962753812 cites W2016130174 @default.
- W2962753812 cites W2021470611 @default.
- W2962753812 cites W2025267965 @default.
- W2962753812 cites W2026335240 @default.
- W2962753812 cites W2027191639 @default.
- W2962753812 cites W2033609575 @default.
- W2962753812 cites W2038452664 @default.
- W2962753812 cites W2039647441 @default.
- W2962753812 cites W2043542060 @default.
- W2962753812 cites W2044876838 @default.
- W2962753812 cites W2046846811 @default.
- W2962753812 cites W2047164550 @default.
- W2962753812 cites W2050596349 @default.
- W2962753812 cites W2052534344 @default.
- W2962753812 cites W2054497502 @default.
- W2962753812 cites W2064242385 @default.
- W2962753812 cites W2067169638 @default.
- W2962753812 cites W2069458086 @default.
- W2962753812 cites W2070475357 @default.
- W2962753812 cites W2074482823 @default.
- W2962753812 cites W2074484541 @default.
- W2962753812 cites W2075259313 @default.
- W2962753812 cites W2077212333 @default.
- W2962753812 cites W2078272780 @default.
- W2962753812 cites W2079844065 @default.
- W2962753812 cites W2083783789 @default.
- W2962753812 cites W2085832497 @default.
- W2962753812 cites W2088465430 @default.
- W2962753812 cites W2088681798 @default.
- W2962753812 cites W2089921387 @default.
- W2962753812 cites W2090443525 @default.
- W2962753812 cites W2095019197 @default.
- W2962753812 cites W2095945180 @default.
- W2962753812 cites W2100118430 @default.
- W2962753812 cites W2110927132 @default.
- W2962753812 cites W2113499798 @default.
- W2962753812 cites W2117930254 @default.
- W2962753812 cites W2134997363 @default.
- W2962753812 cites W2145394332 @default.
- W2962753812 cites W2147704754 @default.
- W2962753812 cites W2150106237 @default.
- W2962753812 cites W2152367557 @default.
- W2962753812 cites W2166414064 @default.
- W2962753812 cites W2167368321 @default.
- W2962753812 cites W2182005201 @default.
- W2962753812 cites W2263481153 @default.
- W2962753812 cites W2266965952 @default.
- W2962753812 cites W2273289140 @default.
- W2962753812 cites W2300112210 @default.
- W2962753812 cites W2419346439 @default.
- W2962753812 cites W2466579904 @default.
- W2962753812 cites W2511958853 @default.
- W2962753812 cites W2518128302 @default.
- W2962753812 cites W2546993628 @default.
- W2962753812 cites W2596052809 @default.
- W2962753812 cites W2610900130 @default.
- W2962753812 cites W2615000255 @default.
- W2962753812 cites W2767346988 @default.
- W2962753812 cites W2787091805 @default.
- W2962753812 cites W2798680087 @default.
- W2962753812 cites W2899140785 @default.
- W2962753812 cites W2963615248 @default.
- W2962753812 cites W3098832790 @default.
- W2962753812 cites W3100384529 @default.
- W2962753812 cites W3102828916 @default.
- W2962753812 cites W3103515489 @default.
- W2962753812 cites W3106478630 @default.
- W2962753812 cites W3121593357 @default.
- W2962753812 cites W4232737979 @default.
- W2962753812 cites W1932028683 @default.
- W2962753812 doi "https://doi.org/10.1103/physrevd.100.014019" @default.