Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962783104> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2962783104 endingPage "417" @default.
- W2962783104 startingPage "395" @default.
- W2962783104 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an algebraically closed field and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite-dimensional associative basic <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra of the form <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A equals k upper Q slash upper I> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> <mml:mi>Q</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>A=kQ/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Q> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=application/x-tex>Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a quiver without oriented cycles or double arrows and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an admissible ideal of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k upper Q> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>kQ</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We consider roots of the Tits form <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=q Subscript upper A> <mml:semantics> <mml:msub> <mml:mi>q</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>q_A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in particular in the case where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=q Subscript upper A> <mml:semantics> <mml:msub> <mml:mi>q</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>q_A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is weakly non-negative. We prove that for any maximal omnipresent root <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=v> <mml:semantics> <mml:mi>v</mml:mi> <mml:annotation encoding=application/x-tex>v</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=q Subscript upper A> <mml:semantics> <mml:msub> <mml:mi>q</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>q_A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exists an indecomposable <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that v=<bold>dim</bold> X. Moreover, if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is strongly simply connected, the existence of a maximal omnipresent root of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=q Subscript upper A> <mml:semantics> <mml:msub> <mml:mi>q</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>q_A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> implies that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is tame of tilted type." @default.
- W2962783104 created "2019-07-30" @default.
- W2962783104 creator A5017453065 @default.
- W2962783104 creator A5023066071 @default.
- W2962783104 date "2013-09-16" @default.
- W2962783104 modified "2023-10-16" @default.
- W2962783104 title "Algebras whose Tits form accepts a maximal omnipresent root" @default.
- W2962783104 cites W1025572287 @default.
- W2962783104 cites W149145167 @default.
- W2962783104 cites W1548384067 @default.
- W2962783104 cites W1936800306 @default.
- W2962783104 cites W1964172127 @default.
- W2962783104 cites W1972518961 @default.
- W2962783104 cites W1982575018 @default.
- W2962783104 cites W2002316406 @default.
- W2962783104 cites W2005428960 @default.
- W2962783104 cites W2011885532 @default.
- W2962783104 cites W2038140391 @default.
- W2962783104 cites W2063223127 @default.
- W2962783104 cites W2066420519 @default.
- W2962783104 cites W2087955253 @default.
- W2962783104 cites W2124540808 @default.
- W2962783104 cites W2126114988 @default.
- W2962783104 cites W2153182719 @default.
- W2962783104 cites W2204890096 @default.
- W2962783104 cites W2314530228 @default.
- W2962783104 cites W2334654614 @default.
- W2962783104 cites W2503589681 @default.
- W2962783104 cites W2962827847 @default.
- W2962783104 cites W4300824122 @default.
- W2962783104 cites W90867967 @default.
- W2962783104 doi "https://doi.org/10.1090/s0002-9947-2013-05841-2" @default.
- W2962783104 hasPublicationYear "2013" @default.
- W2962783104 type Work @default.
- W2962783104 sameAs 2962783104 @default.
- W2962783104 citedByCount "3" @default.
- W2962783104 countsByYear W29627831042015 @default.
- W2962783104 countsByYear W29627831042016 @default.
- W2962783104 countsByYear W29627831042019 @default.
- W2962783104 crossrefType "journal-article" @default.
- W2962783104 hasAuthorship W2962783104A5017453065 @default.
- W2962783104 hasAuthorship W2962783104A5023066071 @default.
- W2962783104 hasBestOaLocation W29627831041 @default.
- W2962783104 hasConcept C11413529 @default.
- W2962783104 hasConcept C154945302 @default.
- W2962783104 hasConcept C2776321320 @default.
- W2962783104 hasConcept C41008148 @default.
- W2962783104 hasConceptScore W2962783104C11413529 @default.
- W2962783104 hasConceptScore W2962783104C154945302 @default.
- W2962783104 hasConceptScore W2962783104C2776321320 @default.
- W2962783104 hasConceptScore W2962783104C41008148 @default.
- W2962783104 hasIssue "1" @default.
- W2962783104 hasLocation W29627831041 @default.
- W2962783104 hasLocation W29627831042 @default.
- W2962783104 hasOpenAccess W2962783104 @default.
- W2962783104 hasPrimaryLocation W29627831041 @default.
- W2962783104 hasRelatedWork W1490908374 @default.
- W2962783104 hasRelatedWork W151193258 @default.
- W2962783104 hasRelatedWork W1529400504 @default.
- W2962783104 hasRelatedWork W1607472309 @default.
- W2962783104 hasRelatedWork W1871911958 @default.
- W2962783104 hasRelatedWork W1892467659 @default.
- W2962783104 hasRelatedWork W2808586768 @default.
- W2962783104 hasRelatedWork W2998403542 @default.
- W2962783104 hasRelatedWork W3107474891 @default.
- W2962783104 hasRelatedWork W38394648 @default.
- W2962783104 hasVolume "366" @default.
- W2962783104 isParatext "false" @default.
- W2962783104 isRetracted "false" @default.
- W2962783104 magId "2962783104" @default.
- W2962783104 workType "article" @default.