Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962795289> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2962795289 endingPage "179" @default.
- W2962795289 startingPage "166" @default.
- W2962795289 abstract "Dramatic increases in the size and complexity of modern datasets have made traditional “centralized” statistical inference prohibitive. In addition to computational challenges associated with big data learning, the presence of numerous data types (e.g., discrete, continuous, categorical, etc.) makes automation and scalability difficult. A question of immediate concern is how to design a data-intensive statistical inference architecture without changing the basic statistical modeling principles developed for “small” data over the last century. To address this problem, we present MetaLP, a flexible, distributed statistical modeling framework suitable for large-scale data analysis, where statistical inference meets big data computing. This framework consists of three key components that work together to provide a holistic solution for big data learning: (i) partitioning massive data into smaller datasets for parallel processing and efficient computation, (ii) modern nonparametric learning based on a specially designed, orthonormal data transformation leading to mixed data algorithms, and finally (iii) combining heterogeneous “local” inferences from partitioned data using meta-analysis techniques to arrive at the “global” inference for the original big data. We present an application of this general theory in the context of a nonparametric two-sample inference algorithm for Expedia personalized hotel recommendations based on 10 million search result records." @default.
- W2962795289 created "2019-07-30" @default.
- W2962795289 creator A5018342675 @default.
- W2962795289 creator A5038047732 @default.
- W2962795289 creator A5060814823 @default.
- W2962795289 creator A5067160952 @default.
- W2962795289 date "2019-06-01" @default.
- W2962795289 modified "2023-10-09" @default.
- W2962795289 title "Nonparametric Distributed Learning Architecture for Big Data: Algorithm and Applications" @default.
- W2962795289 cites W1988060518 @default.
- W2962795289 cites W1999036265 @default.
- W2962795289 cites W2001855995 @default.
- W2962795289 cites W2051685933 @default.
- W2962795289 cites W2052542886 @default.
- W2962795289 cites W2090435477 @default.
- W2962795289 cites W2107328434 @default.
- W2962795289 cites W2126930838 @default.
- W2962795289 cites W2146774335 @default.
- W2962795289 cites W2167958905 @default.
- W2962795289 cites W2320865122 @default.
- W2962795289 cites W2321957512 @default.
- W2962795289 cites W2964275404 @default.
- W2962795289 cites W4245428684 @default.
- W2962795289 cites W4246124652 @default.
- W2962795289 doi "https://doi.org/10.1109/tbdata.2018.2810187" @default.
- W2962795289 hasPublicationYear "2019" @default.
- W2962795289 type Work @default.
- W2962795289 sameAs 2962795289 @default.
- W2962795289 citedByCount "7" @default.
- W2962795289 countsByYear W29627952892019 @default.
- W2962795289 countsByYear W29627952892020 @default.
- W2962795289 countsByYear W29627952892022 @default.
- W2962795289 countsByYear W29627952892023 @default.
- W2962795289 crossrefType "journal-article" @default.
- W2962795289 hasAuthorship W2962795289A5018342675 @default.
- W2962795289 hasAuthorship W2962795289A5038047732 @default.
- W2962795289 hasAuthorship W2962795289A5060814823 @default.
- W2962795289 hasAuthorship W2962795289A5067160952 @default.
- W2962795289 hasBestOaLocation W29627952892 @default.
- W2962795289 hasConcept C105795698 @default.
- W2962795289 hasConcept C119857082 @default.
- W2962795289 hasConcept C124101348 @default.
- W2962795289 hasConcept C134261354 @default.
- W2962795289 hasConcept C151730666 @default.
- W2962795289 hasConcept C154945302 @default.
- W2962795289 hasConcept C2522767166 @default.
- W2962795289 hasConcept C2776214188 @default.
- W2962795289 hasConcept C2779343474 @default.
- W2962795289 hasConcept C33923547 @default.
- W2962795289 hasConcept C41008148 @default.
- W2962795289 hasConcept C48044578 @default.
- W2962795289 hasConcept C5274069 @default.
- W2962795289 hasConcept C67186912 @default.
- W2962795289 hasConcept C75684735 @default.
- W2962795289 hasConcept C77088390 @default.
- W2962795289 hasConcept C80444323 @default.
- W2962795289 hasConcept C86803240 @default.
- W2962795289 hasConceptScore W2962795289C105795698 @default.
- W2962795289 hasConceptScore W2962795289C119857082 @default.
- W2962795289 hasConceptScore W2962795289C124101348 @default.
- W2962795289 hasConceptScore W2962795289C134261354 @default.
- W2962795289 hasConceptScore W2962795289C151730666 @default.
- W2962795289 hasConceptScore W2962795289C154945302 @default.
- W2962795289 hasConceptScore W2962795289C2522767166 @default.
- W2962795289 hasConceptScore W2962795289C2776214188 @default.
- W2962795289 hasConceptScore W2962795289C2779343474 @default.
- W2962795289 hasConceptScore W2962795289C33923547 @default.
- W2962795289 hasConceptScore W2962795289C41008148 @default.
- W2962795289 hasConceptScore W2962795289C48044578 @default.
- W2962795289 hasConceptScore W2962795289C5274069 @default.
- W2962795289 hasConceptScore W2962795289C67186912 @default.
- W2962795289 hasConceptScore W2962795289C75684735 @default.
- W2962795289 hasConceptScore W2962795289C77088390 @default.
- W2962795289 hasConceptScore W2962795289C80444323 @default.
- W2962795289 hasConceptScore W2962795289C86803240 @default.
- W2962795289 hasIssue "2" @default.
- W2962795289 hasLocation W29627952891 @default.
- W2962795289 hasLocation W29627952892 @default.
- W2962795289 hasOpenAccess W2962795289 @default.
- W2962795289 hasPrimaryLocation W29627952891 @default.
- W2962795289 hasRelatedWork W2030634827 @default.
- W2962795289 hasRelatedWork W2512967569 @default.
- W2962795289 hasRelatedWork W2576683119 @default.
- W2962795289 hasRelatedWork W2608950002 @default.
- W2962795289 hasRelatedWork W2969505981 @default.
- W2962795289 hasRelatedWork W2981347089 @default.
- W2962795289 hasRelatedWork W3014300295 @default.
- W2962795289 hasRelatedWork W4236246625 @default.
- W2962795289 hasRelatedWork W4248613987 @default.
- W2962795289 hasRelatedWork W4299638067 @default.
- W2962795289 hasVolume "5" @default.
- W2962795289 isParatext "false" @default.
- W2962795289 isRetracted "false" @default.
- W2962795289 magId "2962795289" @default.
- W2962795289 workType "article" @default.