Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962804035> ?p ?o ?g. }
- W2962804035 abstract "For a class of sparse random matrices of the form $A_{n}=(xi_{i,j}delta_{i,j})_{i,j=1}^{n}$, where ${xi_{i,j}}$ are i.i.d. centered sub-Gaussian random variables of unit variance, and ${delta_{i,j}}$ are i.i.d. Bernoulli random variables taking value $1$ with probability $p_{n}$, we prove that the empirical spectral distribution of $A_{n}/sqrt{np_{n}}$ converges weakly to the circular law, in probability, for all $p_{n}$ such that $p_{n}=omega({log^{2}n}/{n})$. Additionally if $p_{n}$ satisfies the inequality $np_{n}>exp(csqrt{log n})$ for some constant $c$, then the above convergence is shown to hold almost surely. The key to this is a new bound on the smallest singular value of complex shifts of real valued sparse random matrices. The circular law limit also extends to the adjacency matrix of a directed Erdős–Rényi graph with edge connectivity probability $p_{n}$." @default.
- W2962804035 created "2019-07-30" @default.
- W2962804035 creator A5057215536 @default.
- W2962804035 creator A5090571169 @default.
- W2962804035 date "2019-07-01" @default.
- W2962804035 modified "2023-10-09" @default.
- W2962804035 title "The circular law for sparse non-Hermitian matrices" @default.
- W2962804035 cites W1480650841 @default.
- W2962804035 cites W1586554030 @default.
- W2962804035 cites W1974755392 @default.
- W2962804035 cites W1978864992 @default.
- W2962804035 cites W1993311005 @default.
- W2962804035 cites W2010549619 @default.
- W2962804035 cites W2027559193 @default.
- W2962804035 cites W2038801368 @default.
- W2962804035 cites W2042765770 @default.
- W2962804035 cites W2063361547 @default.
- W2962804035 cites W2072988652 @default.
- W2962804035 cites W2081131431 @default.
- W2962804035 cites W2085739863 @default.
- W2962804035 cites W2088706743 @default.
- W2962804035 cites W2101062161 @default.
- W2962804035 cites W2124492078 @default.
- W2962804035 cites W2140874510 @default.
- W2962804035 cites W2162994716 @default.
- W2962804035 cites W2168494960 @default.
- W2962804035 cites W2327680971 @default.
- W2962804035 cites W2328187444 @default.
- W2962804035 cites W2962804035 @default.
- W2962804035 cites W2963519797 @default.
- W2962804035 cites W2963541360 @default.
- W2962804035 cites W2963576470 @default.
- W2962804035 cites W2963890635 @default.
- W2962804035 cites W3098783741 @default.
- W2962804035 cites W3101114036 @default.
- W2962804035 cites W3103061670 @default.
- W2962804035 cites W3104192529 @default.
- W2962804035 cites W3104628518 @default.
- W2962804035 cites W3105109562 @default.
- W2962804035 cites W4243997607 @default.
- W2962804035 cites W4244751130 @default.
- W2962804035 cites W602904462 @default.
- W2962804035 doi "https://doi.org/10.1214/18-aop1310" @default.
- W2962804035 hasPublicationYear "2019" @default.
- W2962804035 type Work @default.
- W2962804035 sameAs 2962804035 @default.
- W2962804035 citedByCount "11" @default.
- W2962804035 countsByYear W29628040352018 @default.
- W2962804035 countsByYear W29628040352019 @default.
- W2962804035 countsByYear W29628040352020 @default.
- W2962804035 countsByYear W29628040352021 @default.
- W2962804035 countsByYear W29628040352022 @default.
- W2962804035 countsByYear W29628040352023 @default.
- W2962804035 crossrefType "journal-article" @default.
- W2962804035 hasAuthorship W2962804035A5057215536 @default.
- W2962804035 hasAuthorship W2962804035A5090571169 @default.
- W2962804035 hasBestOaLocation W29628040351 @default.
- W2962804035 hasConcept C105795698 @default.
- W2962804035 hasConcept C109282560 @default.
- W2962804035 hasConcept C114614502 @default.
- W2962804035 hasConcept C118615104 @default.
- W2962804035 hasConcept C121332964 @default.
- W2962804035 hasConcept C122123141 @default.
- W2962804035 hasConcept C127413603 @default.
- W2962804035 hasConcept C132525143 @default.
- W2962804035 hasConcept C141042865 @default.
- W2962804035 hasConcept C146978453 @default.
- W2962804035 hasConcept C152361515 @default.
- W2962804035 hasConcept C158693339 @default.
- W2962804035 hasConcept C180356752 @default.
- W2962804035 hasConcept C182514268 @default.
- W2962804035 hasConcept C202444582 @default.
- W2962804035 hasConcept C33923547 @default.
- W2962804035 hasConcept C47458327 @default.
- W2962804035 hasConcept C62520636 @default.
- W2962804035 hasConcept C64812099 @default.
- W2962804035 hasConcept C94940 @default.
- W2962804035 hasConcept C95707001 @default.
- W2962804035 hasConcept C95763700 @default.
- W2962804035 hasConceptScore W2962804035C105795698 @default.
- W2962804035 hasConceptScore W2962804035C109282560 @default.
- W2962804035 hasConceptScore W2962804035C114614502 @default.
- W2962804035 hasConceptScore W2962804035C118615104 @default.
- W2962804035 hasConceptScore W2962804035C121332964 @default.
- W2962804035 hasConceptScore W2962804035C122123141 @default.
- W2962804035 hasConceptScore W2962804035C127413603 @default.
- W2962804035 hasConceptScore W2962804035C132525143 @default.
- W2962804035 hasConceptScore W2962804035C141042865 @default.
- W2962804035 hasConceptScore W2962804035C146978453 @default.
- W2962804035 hasConceptScore W2962804035C152361515 @default.
- W2962804035 hasConceptScore W2962804035C158693339 @default.
- W2962804035 hasConceptScore W2962804035C180356752 @default.
- W2962804035 hasConceptScore W2962804035C182514268 @default.
- W2962804035 hasConceptScore W2962804035C202444582 @default.
- W2962804035 hasConceptScore W2962804035C33923547 @default.
- W2962804035 hasConceptScore W2962804035C47458327 @default.
- W2962804035 hasConceptScore W2962804035C62520636 @default.
- W2962804035 hasConceptScore W2962804035C64812099 @default.
- W2962804035 hasConceptScore W2962804035C94940 @default.
- W2962804035 hasConceptScore W2962804035C95707001 @default.