Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962838391> ?p ?o ?g. }
- W2962838391 abstract "We propose Partial Correlation Screening (PCS) as a new row-by-row approach to estimating a large precision matrix $Omega$. To estimate the $i$-th row of $Omega$, $1 leq i leq p$, PCS uses a Screen step and a Clean step. In the Screen step, PCS recruits a (small) subset of indices using a stage-wise algorithm, where in each stage, the algorithm updates the set of recruited indices by adding the index $j$ that has the largest (in magnitude) empirical partial correlation with $i$. In the Clean step, PCS re-investigates all recruited indices and use them to reconstruct the $i$-th row of $Omega$. PCS is computationally efficient and modest in memory use: to estimate a row of $Omega$, it only needs a few rows (determined sequentially) of the empirical covariance matrix. This enables PCS to execute the estimation of a large precision matrix (e.g., $p=10K$) in a few minutes, and open doors to estimating much larger precision matrices. We use PCS for classification. Higher Criticism Thresholding (HCT) is a recent classifier that enjoys optimality, but to exploit its full potential in practice, one needs a good estimate of the precision matrix $Omega$. Combining HCT with any approach to estimating $Omega$ gives a new classifier: examples include HCT-PCS and HCT-glasso. We have applied HCT-PCS to two large microarray data sets ($p = 8K$ and $10K$) for classification, where it not only significantly outperforms HCT-glasso, but also is competitive to the Support Vector Machine (SVM) and Random Forest (RF). The results suggest that PCS gives more useful estimates of $Omega$ than the glasso. We set up a general theoretical framework and show that in a broad context, PCS fully recovers the support of $Omega$ and HCT-PCS yields optimal classification behavior. Our proofs shed interesting light on the behavior of stage-wise procedures." @default.
- W2962838391 created "2019-07-30" @default.
- W2962838391 creator A5075757275 @default.
- W2962838391 creator A5076968344 @default.
- W2962838391 creator A5083038132 @default.
- W2962838391 date "2016-10-01" @default.
- W2962838391 modified "2023-09-27" @default.
- W2962838391 title "Partial correlation screening for estimating large precision matrices, with applications to classification" @default.
- W2962838391 cites W1824047490 @default.
- W2962838391 cites W1971265470 @default.
- W2962838391 cites W1974755392 @default.
- W2962838391 cites W1989727964 @default.
- W2962838391 cites W1996213317 @default.
- W2962838391 cites W2038762726 @default.
- W2962838391 cites W2046658845 @default.
- W2962838391 cites W2049701820 @default.
- W2962838391 cites W2062408248 @default.
- W2962838391 cites W2064921494 @default.
- W2962838391 cites W2074360197 @default.
- W2962838391 cites W2097581234 @default.
- W2962838391 cites W2102041666 @default.
- W2962838391 cites W2115729631 @default.
- W2962838391 cites W2116805437 @default.
- W2962838391 cites W2125156589 @default.
- W2962838391 cites W2131759077 @default.
- W2962838391 cites W2132555912 @default.
- W2962838391 cites W2139212933 @default.
- W2962838391 cites W2140107833 @default.
- W2962838391 cites W2147329339 @default.
- W2962838391 cites W2154560360 @default.
- W2962838391 cites W2154776925 @default.
- W2962838391 cites W2154972590 @default.
- W2962838391 cites W2157875785 @default.
- W2962838391 cites W2158391286 @default.
- W2962838391 cites W2162708633 @default.
- W2962838391 cites W2164092415 @default.
- W2962838391 cites W2170866857 @default.
- W2962838391 cites W2264285301 @default.
- W2962838391 cites W2610857016 @default.
- W2962838391 cites W2911964244 @default.
- W2962838391 cites W2965497096 @default.
- W2962838391 cites W3099354396 @default.
- W2962838391 cites W3100712906 @default.
- W2962838391 cites W3101582723 @default.
- W2962838391 cites W3101788651 @default.
- W2962838391 cites W3103643510 @default.
- W2962838391 cites W340056678 @default.
- W2962838391 cites W2106802398 @default.
- W2962838391 doi "https://doi.org/10.1214/15-aos1392" @default.
- W2962838391 hasPublicationYear "2016" @default.
- W2962838391 type Work @default.
- W2962838391 sameAs 2962838391 @default.
- W2962838391 citedByCount "7" @default.
- W2962838391 countsByYear W29628383912016 @default.
- W2962838391 countsByYear W29628383912018 @default.
- W2962838391 countsByYear W29628383912019 @default.
- W2962838391 countsByYear W29628383912020 @default.
- W2962838391 countsByYear W29628383912021 @default.
- W2962838391 crossrefType "journal-article" @default.
- W2962838391 hasAuthorship W2962838391A5075757275 @default.
- W2962838391 hasAuthorship W2962838391A5076968344 @default.
- W2962838391 hasAuthorship W2962838391A5083038132 @default.
- W2962838391 hasBestOaLocation W29628383911 @default.
- W2962838391 hasConcept C104140500 @default.
- W2962838391 hasConcept C105795698 @default.
- W2962838391 hasConcept C106487976 @default.
- W2962838391 hasConcept C11413529 @default.
- W2962838391 hasConcept C117220453 @default.
- W2962838391 hasConcept C121332964 @default.
- W2962838391 hasConcept C12267149 @default.
- W2962838391 hasConcept C135598885 @default.
- W2962838391 hasConcept C154945302 @default.
- W2962838391 hasConcept C159985019 @default.
- W2962838391 hasConcept C185142706 @default.
- W2962838391 hasConcept C192562407 @default.
- W2962838391 hasConcept C2524010 @default.
- W2962838391 hasConcept C2779557605 @default.
- W2962838391 hasConcept C33923547 @default.
- W2962838391 hasConcept C41008148 @default.
- W2962838391 hasConcept C62520636 @default.
- W2962838391 hasConcept C77088390 @default.
- W2962838391 hasConceptScore W2962838391C104140500 @default.
- W2962838391 hasConceptScore W2962838391C105795698 @default.
- W2962838391 hasConceptScore W2962838391C106487976 @default.
- W2962838391 hasConceptScore W2962838391C11413529 @default.
- W2962838391 hasConceptScore W2962838391C117220453 @default.
- W2962838391 hasConceptScore W2962838391C121332964 @default.
- W2962838391 hasConceptScore W2962838391C12267149 @default.
- W2962838391 hasConceptScore W2962838391C135598885 @default.
- W2962838391 hasConceptScore W2962838391C154945302 @default.
- W2962838391 hasConceptScore W2962838391C159985019 @default.
- W2962838391 hasConceptScore W2962838391C185142706 @default.
- W2962838391 hasConceptScore W2962838391C192562407 @default.
- W2962838391 hasConceptScore W2962838391C2524010 @default.
- W2962838391 hasConceptScore W2962838391C2779557605 @default.
- W2962838391 hasConceptScore W2962838391C33923547 @default.
- W2962838391 hasConceptScore W2962838391C41008148 @default.
- W2962838391 hasConceptScore W2962838391C62520636 @default.
- W2962838391 hasConceptScore W2962838391C77088390 @default.
- W2962838391 hasLocation W29628383911 @default.