Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962839776> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2962839776 endingPage "169" @default.
- W2962839776 startingPage "131" @default.
- W2962839776 abstract "We study Kostant cohomology and Bernstein–Gelfand–Gelfand resolutions for finite dimensional representations of basic classical Lie superalgebras. For each choice of parabolic subalgebra and representation of such a Lie superalgebra, there is a natural definition of the boundary and coboundary operators, which define (co)homology of the nilradical of the parabolic subalgebra. We prove that complete reducibility of the homology groups is a necessary condition to have a resolution of an irreducible module in terms of (generalised) Verma modules. Every such a resolution is then given by modules induced by these homology groups. We also prove that if these homology groups are completely reducible, a sufficient condition for the existence of this resolution is the property that these groups are isomorphic to the kernel of the Kostant quabla operator, which is equivalent with disjointness of the boundary and coboundary operators. Then we use these results to derive very explicit conditions under which BGG resolutions exist, which are particularly useful for the superalgebras of type I . For the unitarisable representations of gl ( m | n ) and osp ( 2 | 2 n ) we derive conditions on the parabolic subalgebra under which the BGG resolutions exist. We also apply the obtained theory to construct specific examples of BGG resolutions for osp ( m | 2 n ) . Finally we state some results for typical modules of gl ( m | n ) and osp ( 2 | 2 n ) ." @default.
- W2962839776 created "2019-07-30" @default.
- W2962839776 creator A5086285555 @default.
- W2962839776 date "2014-02-01" @default.
- W2962839776 modified "2023-10-11" @default.
- W2962839776 title "Bernstein–Gelfand–Gelfand resolutions for basic classical Lie superalgebras" @default.
- W2962839776 cites W1968710469 @default.
- W2962839776 cites W1976459497 @default.
- W2962839776 cites W1980873472 @default.
- W2962839776 cites W1983587920 @default.
- W2962839776 cites W1984093128 @default.
- W2962839776 cites W1985767206 @default.
- W2962839776 cites W1986504289 @default.
- W2962839776 cites W1990244019 @default.
- W2962839776 cites W1996186646 @default.
- W2962839776 cites W1998484626 @default.
- W2962839776 cites W1999369214 @default.
- W2962839776 cites W2025132948 @default.
- W2962839776 cites W2035150129 @default.
- W2962839776 cites W2038840526 @default.
- W2962839776 cites W2051356158 @default.
- W2962839776 cites W2052667590 @default.
- W2962839776 cites W2065402438 @default.
- W2962839776 cites W2072772897 @default.
- W2962839776 cites W2076723976 @default.
- W2962839776 cites W2077077957 @default.
- W2962839776 cites W2082248053 @default.
- W2962839776 cites W2086177215 @default.
- W2962839776 cites W2088040177 @default.
- W2962839776 cites W2139685892 @default.
- W2962839776 cites W2164742817 @default.
- W2962839776 cites W2319724446 @default.
- W2962839776 cites W2335712215 @default.
- W2962839776 cites W2408345652 @default.
- W2962839776 cites W2963442411 @default.
- W2962839776 cites W3099551475 @default.
- W2962839776 cites W3100291567 @default.
- W2962839776 cites W3102011366 @default.
- W2962839776 cites W3102647208 @default.
- W2962839776 cites W3104259847 @default.
- W2962839776 cites W4213269858 @default.
- W2962839776 cites W4251541384 @default.
- W2962839776 doi "https://doi.org/10.1016/j.jalgebra.2013.07.039" @default.
- W2962839776 hasPublicationYear "2014" @default.
- W2962839776 type Work @default.
- W2962839776 sameAs 2962839776 @default.
- W2962839776 citedByCount "9" @default.
- W2962839776 countsByYear W29628397762013 @default.
- W2962839776 countsByYear W29628397762014 @default.
- W2962839776 countsByYear W29628397762015 @default.
- W2962839776 countsByYear W29628397762016 @default.
- W2962839776 countsByYear W29628397762017 @default.
- W2962839776 countsByYear W29628397762020 @default.
- W2962839776 countsByYear W29628397762023 @default.
- W2962839776 crossrefType "journal-article" @default.
- W2962839776 hasAuthorship W2962839776A5086285555 @default.
- W2962839776 hasBestOaLocation W29628397761 @default.
- W2962839776 hasConcept C136119220 @default.
- W2962839776 hasConcept C202444582 @default.
- W2962839776 hasConcept C33923547 @default.
- W2962839776 hasConcept C51568863 @default.
- W2962839776 hasConceptScore W2962839776C136119220 @default.
- W2962839776 hasConceptScore W2962839776C202444582 @default.
- W2962839776 hasConceptScore W2962839776C33923547 @default.
- W2962839776 hasConceptScore W2962839776C51568863 @default.
- W2962839776 hasLocation W29628397761 @default.
- W2962839776 hasLocation W29628397762 @default.
- W2962839776 hasLocation W29628397763 @default.
- W2962839776 hasLocation W29628397764 @default.
- W2962839776 hasOpenAccess W2962839776 @default.
- W2962839776 hasPrimaryLocation W29628397761 @default.
- W2962839776 hasRelatedWork W1970366131 @default.
- W2962839776 hasRelatedWork W1978654816 @default.
- W2962839776 hasRelatedWork W1989503713 @default.
- W2962839776 hasRelatedWork W1995548053 @default.
- W2962839776 hasRelatedWork W2004427275 @default.
- W2962839776 hasRelatedWork W2012477233 @default.
- W2962839776 hasRelatedWork W2018815933 @default.
- W2962839776 hasRelatedWork W2163504997 @default.
- W2962839776 hasRelatedWork W2963450278 @default.
- W2962839776 hasRelatedWork W4214671562 @default.
- W2962839776 hasVolume "399" @default.
- W2962839776 isParatext "false" @default.
- W2962839776 isRetracted "false" @default.
- W2962839776 magId "2962839776" @default.
- W2962839776 workType "article" @default.