Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962847184> ?p ?o ?g. }
- W2962847184 endingPage "844" @default.
- W2962847184 startingPage "835" @default.
- W2962847184 abstract "Most recommender systems recommend a list of items. The user examines the list, from the first item to the last, and often chooses the first attractive item and does not examine the rest. This type of user behavior can be modeled by the cascade model. In this work, we study cascading bandits, an online learning variant of the cascade model where the goal is to recommend K most attractive items from a large set of L candidate items. We propose two algorithms for solving this problem, which are based on the idea of linear generalization. The key idea in our solutions is that we learn a predictor of the attraction probabilities of items from their features, as opposing to learning the attraction probability of each item independently as in the existing work. This results in practical learning algorithms whose regret does not depend on the number of items L. We bound the regret of one algorithm and comprehensively evaluate the other on a range of recommendation problems. The algorithm performs well and outperforms all baselines." @default.
- W2962847184 created "2019-07-30" @default.
- W2962847184 creator A5002606910 @default.
- W2962847184 creator A5029516423 @default.
- W2962847184 creator A5034412289 @default.
- W2962847184 creator A5049020775 @default.
- W2962847184 creator A5067555437 @default.
- W2962847184 creator A5085070209 @default.
- W2962847184 date "2016-06-25" @default.
- W2962847184 modified "2023-09-30" @default.
- W2962847184 title "Cascading bandits for large-scale recommendation problems" @default.
- W2962847184 cites W1578264931 @default.
- W2962847184 cites W1630558870 @default.
- W2962847184 cites W1721811070 @default.
- W2962847184 cites W1876041327 @default.
- W2962847184 cites W1900560890 @default.
- W2962847184 cites W1911551976 @default.
- W2962847184 cites W1992549066 @default.
- W2962847184 cites W2004335587 @default.
- W2962847184 cites W2013532620 @default.
- W2962847184 cites W2023599408 @default.
- W2962847184 cites W2039522160 @default.
- W2962847184 cites W2054141820 @default.
- W2962847184 cites W2093562354 @default.
- W2962847184 cites W2114802044 @default.
- W2962847184 cites W2117600734 @default.
- W2962847184 cites W2119738618 @default.
- W2962847184 cites W2149721706 @default.
- W2962847184 cites W2154739689 @default.
- W2962847184 cites W2166253248 @default.
- W2962847184 cites W2167331200 @default.
- W2962847184 cites W2185823609 @default.
- W2962847184 cites W2259177609 @default.
- W2962847184 cites W2402441596 @default.
- W2962847184 hasPublicationYear "2016" @default.
- W2962847184 type Work @default.
- W2962847184 sameAs 2962847184 @default.
- W2962847184 citedByCount "17" @default.
- W2962847184 countsByYear W29628471842016 @default.
- W2962847184 countsByYear W29628471842017 @default.
- W2962847184 countsByYear W29628471842018 @default.
- W2962847184 countsByYear W29628471842019 @default.
- W2962847184 countsByYear W29628471842020 @default.
- W2962847184 countsByYear W29628471842021 @default.
- W2962847184 crossrefType "proceedings-article" @default.
- W2962847184 hasAuthorship W2962847184A5002606910 @default.
- W2962847184 hasAuthorship W2962847184A5029516423 @default.
- W2962847184 hasAuthorship W2962847184A5034412289 @default.
- W2962847184 hasAuthorship W2962847184A5049020775 @default.
- W2962847184 hasAuthorship W2962847184A5067555437 @default.
- W2962847184 hasAuthorship W2962847184A5085070209 @default.
- W2962847184 hasConcept C119857082 @default.
- W2962847184 hasConcept C121332964 @default.
- W2962847184 hasConcept C134306372 @default.
- W2962847184 hasConcept C154945302 @default.
- W2962847184 hasConcept C177148314 @default.
- W2962847184 hasConcept C177264268 @default.
- W2962847184 hasConcept C199360897 @default.
- W2962847184 hasConcept C26517878 @default.
- W2962847184 hasConcept C2778755073 @default.
- W2962847184 hasConcept C33923547 @default.
- W2962847184 hasConcept C38652104 @default.
- W2962847184 hasConcept C41008148 @default.
- W2962847184 hasConcept C50817715 @default.
- W2962847184 hasConcept C557471498 @default.
- W2962847184 hasConcept C62520636 @default.
- W2962847184 hasConceptScore W2962847184C119857082 @default.
- W2962847184 hasConceptScore W2962847184C121332964 @default.
- W2962847184 hasConceptScore W2962847184C134306372 @default.
- W2962847184 hasConceptScore W2962847184C154945302 @default.
- W2962847184 hasConceptScore W2962847184C177148314 @default.
- W2962847184 hasConceptScore W2962847184C177264268 @default.
- W2962847184 hasConceptScore W2962847184C199360897 @default.
- W2962847184 hasConceptScore W2962847184C26517878 @default.
- W2962847184 hasConceptScore W2962847184C2778755073 @default.
- W2962847184 hasConceptScore W2962847184C33923547 @default.
- W2962847184 hasConceptScore W2962847184C38652104 @default.
- W2962847184 hasConceptScore W2962847184C41008148 @default.
- W2962847184 hasConceptScore W2962847184C50817715 @default.
- W2962847184 hasConceptScore W2962847184C557471498 @default.
- W2962847184 hasConceptScore W2962847184C62520636 @default.
- W2962847184 hasOpenAccess W2962847184 @default.
- W2962847184 hasRelatedWork W1487320471 @default.
- W2962847184 hasRelatedWork W1900560890 @default.
- W2962847184 hasRelatedWork W1992549066 @default.
- W2962847184 hasRelatedWork W2009551863 @default.
- W2962847184 hasRelatedWork W2023599408 @default.
- W2962847184 hasRelatedWork W2039522160 @default.
- W2962847184 hasRelatedWork W2090883204 @default.
- W2962847184 hasRelatedWork W2112420033 @default.
- W2962847184 hasRelatedWork W2117600734 @default.
- W2962847184 hasRelatedWork W2119738618 @default.
- W2962847184 hasRelatedWork W2168405694 @default.
- W2962847184 hasRelatedWork W2301810623 @default.
- W2962847184 hasRelatedWork W2402441596 @default.
- W2962847184 hasRelatedWork W2443763917 @default.
- W2962847184 hasRelatedWork W2604370872 @default.
- W2962847184 hasRelatedWork W2963582185 @default.