Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962847895> ?p ?o ?g. }
- W2962847895 endingPage "2208" @default.
- W2962847895 startingPage "2195" @default.
- W2962847895 abstract "To maximize the influence across multiple heterogeneous networks, we propose an innovative cross-network learning model to study the influence maximization problem from two perspectives, namely, seed selection and graph sparsification. On one hand, we consider seed selection as a cross-network node prediction task, by leveraging the greedy seed selection knowledge prelearned in a smaller source network, to heuristically select the nodes most likely to act as seed for the target networks. On the other hand, we consider graph sparsification as a cross-network edge prediction problem, by adapting the influence propagation knowledge previously acquired in the source network to remove the edges least likely to contribute to influence propagation in the target networks. To address domain discrepancy, a fuzzy self-learning algorithm is proposed to iteratively train the prediction model by leveraging not only the fully labeled data in the source network, but also the most confident predicted instances with their predicted fuzzy labels in the target network. With such fuzzy labels, we can differentiate the confident levels of predictions generated by different self-training iterations, thus lowering the negative effects caused by less confident predictions. The performance of the proposed model is benchmarked with the popular influence maximization algorithms for seed selection; and also competed with several graph sparsification algorithms for inactive edge prediction. Experimental results on the real-world datasets show that the proposed cross-network learning model can achieve a good tradeoff between the efficiency and effectiveness of the influence maximization task in the target networks." @default.
- W2962847895 created "2019-07-30" @default.
- W2962847895 creator A5043016512 @default.
- W2962847895 creator A5062329742 @default.
- W2962847895 creator A5083883714 @default.
- W2962847895 date "2020-09-01" @default.
- W2962847895 modified "2023-09-23" @default.
- W2962847895 title "Cross-Network Learning With Fuzzy Labels for Seed Selection and Graph Sparsification in Influence Maximization" @default.
- W2962847895 cites W144764141 @default.
- W2962847895 cites W149168385 @default.
- W2962847895 cites W1560267311 @default.
- W2962847895 cites W1979298416 @default.
- W2962847895 cites W1981141219 @default.
- W2962847895 cites W1981166908 @default.
- W2962847895 cites W1981377410 @default.
- W2962847895 cites W1984069252 @default.
- W2962847895 cites W2009305899 @default.
- W2962847895 cites W2022704179 @default.
- W2962847895 cites W2029316629 @default.
- W2962847895 cites W2035165116 @default.
- W2962847895 cites W2042123098 @default.
- W2962847895 cites W2051834357 @default.
- W2962847895 cites W2053105309 @default.
- W2962847895 cites W2061820396 @default.
- W2962847895 cites W2103209441 @default.
- W2962847895 cites W2108858998 @default.
- W2962847895 cites W2132801025 @default.
- W2962847895 cites W2138621811 @default.
- W2962847895 cites W2141403143 @default.
- W2962847895 cites W2142904341 @default.
- W2962847895 cites W2146591355 @default.
- W2962847895 cites W2158478952 @default.
- W2962847895 cites W2160411082 @default.
- W2962847895 cites W2165698076 @default.
- W2962847895 cites W2166470254 @default.
- W2962847895 cites W2169876669 @default.
- W2962847895 cites W2171371904 @default.
- W2962847895 cites W2396832258 @default.
- W2962847895 cites W2552928059 @default.
- W2962847895 cites W2557033584 @default.
- W2962847895 cites W2557279148 @default.
- W2962847895 cites W2605953417 @default.
- W2962847895 cites W2619759446 @default.
- W2962847895 cites W2740997336 @default.
- W2962847895 cites W2803375486 @default.
- W2962847895 cites W2962773920 @default.
- W2962847895 cites W3151195428 @default.
- W2962847895 cites W4238452917 @default.
- W2962847895 cites W4301207233 @default.
- W2962847895 cites W633744573 @default.
- W2962847895 cites W78765239 @default.
- W2962847895 doi "https://doi.org/10.1109/tfuzz.2019.2931272" @default.
- W2962847895 hasPublicationYear "2020" @default.
- W2962847895 type Work @default.
- W2962847895 sameAs 2962847895 @default.
- W2962847895 citedByCount "11" @default.
- W2962847895 countsByYear W29628478952019 @default.
- W2962847895 countsByYear W29628478952020 @default.
- W2962847895 countsByYear W29628478952021 @default.
- W2962847895 countsByYear W29628478952022 @default.
- W2962847895 countsByYear W29628478952023 @default.
- W2962847895 crossrefType "journal-article" @default.
- W2962847895 hasAuthorship W2962847895A5043016512 @default.
- W2962847895 hasAuthorship W2962847895A5062329742 @default.
- W2962847895 hasAuthorship W2962847895A5083883714 @default.
- W2962847895 hasConcept C11413529 @default.
- W2962847895 hasConcept C119857082 @default.
- W2962847895 hasConcept C124101348 @default.
- W2962847895 hasConcept C126255220 @default.
- W2962847895 hasConcept C132525143 @default.
- W2962847895 hasConcept C154945302 @default.
- W2962847895 hasConcept C162307627 @default.
- W2962847895 hasConcept C162324750 @default.
- W2962847895 hasConcept C187736073 @default.
- W2962847895 hasConcept C207685749 @default.
- W2962847895 hasConcept C2776330181 @default.
- W2962847895 hasConcept C2780451532 @default.
- W2962847895 hasConcept C33923547 @default.
- W2962847895 hasConcept C41008148 @default.
- W2962847895 hasConcept C51823790 @default.
- W2962847895 hasConcept C80444323 @default.
- W2962847895 hasConcept C81917197 @default.
- W2962847895 hasConcept C93959086 @default.
- W2962847895 hasConceptScore W2962847895C11413529 @default.
- W2962847895 hasConceptScore W2962847895C119857082 @default.
- W2962847895 hasConceptScore W2962847895C124101348 @default.
- W2962847895 hasConceptScore W2962847895C126255220 @default.
- W2962847895 hasConceptScore W2962847895C132525143 @default.
- W2962847895 hasConceptScore W2962847895C154945302 @default.
- W2962847895 hasConceptScore W2962847895C162307627 @default.
- W2962847895 hasConceptScore W2962847895C162324750 @default.
- W2962847895 hasConceptScore W2962847895C187736073 @default.
- W2962847895 hasConceptScore W2962847895C207685749 @default.
- W2962847895 hasConceptScore W2962847895C2776330181 @default.
- W2962847895 hasConceptScore W2962847895C2780451532 @default.
- W2962847895 hasConceptScore W2962847895C33923547 @default.
- W2962847895 hasConceptScore W2962847895C41008148 @default.
- W2962847895 hasConceptScore W2962847895C51823790 @default.