Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962853428> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2962853428 abstract "The dependence of autonomous vehicles (AVs) on sensors and communication links exposes them to cyber-physical (CP) attacks by adversaries that seek to take control of the AVs by manipulating their data. In this paper, the state estimation process for monitoring AV dynamics, in presence of CP attacks, is analyzed and a novel adversarial deep reinforcement learning (RL) algorithm is proposed to maximize the robustness of AV dynamics control to CP attacks. The attacker's action and the AV's reaction to CP attacks are studied in a game-theoretic framework. In the formulated game, the attacker seeks to inject faulty data to AV sensor readings so as to manipulate the inter-vehicle optimal safe spacing and potentially increase the risk of AV accidents or reduce the vehicle flow on the roads. Meanwhile, the AV, acting as a defender, seeks to minimize the deviations of spacing so as to ensure robustness to the attacker's actions. Since the AV has no information about the attacker's action and due to the infinite possibilities for data value manipulations, each player uses long short term memory (LSTM) blocks to learn the expected spacing deviation resulting from its own action and feeds this deviation to a reinforcement learning (RL) algorithm. Then, the attacker's RL algorithm chooses the action which maximizes the spacing deviation, while the AV's RL algorithm seeks to find the optimal action that minimizes such deviation. Simulation results show that the proposed adversarial deep RL algorithm can improve the robustness of the AV dynamics control as it minimizes the intra-AV spacing deviation." @default.
- W2962853428 created "2019-07-30" @default.
- W2962853428 creator A5020266992 @default.
- W2962853428 creator A5024108653 @default.
- W2962853428 creator A5055303802 @default.
- W2962853428 creator A5055728930 @default.
- W2962853428 date "2018-11-01" @default.
- W2962853428 modified "2023-10-15" @default.
- W2962853428 title "Robust Deep Reinforcement Learning for Security and Safety in Autonomous Vehicle Systems" @default.
- W2962853428 cites W1979939798 @default.
- W2962853428 cites W1992900191 @default.
- W2962853428 cites W2005828260 @default.
- W2962853428 cites W2037777662 @default.
- W2962853428 cites W2069124975 @default.
- W2962853428 cites W2094039233 @default.
- W2962853428 cites W2096279841 @default.
- W2962853428 cites W2098753860 @default.
- W2962853428 cites W2143612262 @default.
- W2962853428 cites W2610322383 @default.
- W2962853428 cites W2776458791 @default.
- W2962853428 cites W2789620580 @default.
- W2962853428 cites W2963752169 @default.
- W2962853428 cites W3098405735 @default.
- W2962853428 doi "https://doi.org/10.1109/itsc.2018.8569635" @default.
- W2962853428 hasPublicationYear "2018" @default.
- W2962853428 type Work @default.
- W2962853428 sameAs 2962853428 @default.
- W2962853428 citedByCount "80" @default.
- W2962853428 countsByYear W29628534282018 @default.
- W2962853428 countsByYear W29628534282019 @default.
- W2962853428 countsByYear W29628534282020 @default.
- W2962853428 countsByYear W29628534282021 @default.
- W2962853428 countsByYear W29628534282022 @default.
- W2962853428 countsByYear W29628534282023 @default.
- W2962853428 crossrefType "proceedings-article" @default.
- W2962853428 hasAuthorship W2962853428A5020266992 @default.
- W2962853428 hasAuthorship W2962853428A5024108653 @default.
- W2962853428 hasAuthorship W2962853428A5055303802 @default.
- W2962853428 hasAuthorship W2962853428A5055728930 @default.
- W2962853428 hasBestOaLocation W29628534282 @default.
- W2962853428 hasConcept C104317684 @default.
- W2962853428 hasConcept C126255220 @default.
- W2962853428 hasConcept C154945302 @default.
- W2962853428 hasConcept C185592680 @default.
- W2962853428 hasConcept C33923547 @default.
- W2962853428 hasConcept C37736160 @default.
- W2962853428 hasConcept C41008148 @default.
- W2962853428 hasConcept C55493867 @default.
- W2962853428 hasConcept C63479239 @default.
- W2962853428 hasConcept C97541855 @default.
- W2962853428 hasConceptScore W2962853428C104317684 @default.
- W2962853428 hasConceptScore W2962853428C126255220 @default.
- W2962853428 hasConceptScore W2962853428C154945302 @default.
- W2962853428 hasConceptScore W2962853428C185592680 @default.
- W2962853428 hasConceptScore W2962853428C33923547 @default.
- W2962853428 hasConceptScore W2962853428C37736160 @default.
- W2962853428 hasConceptScore W2962853428C41008148 @default.
- W2962853428 hasConceptScore W2962853428C55493867 @default.
- W2962853428 hasConceptScore W2962853428C63479239 @default.
- W2962853428 hasConceptScore W2962853428C97541855 @default.
- W2962853428 hasLocation W29628534281 @default.
- W2962853428 hasLocation W29628534282 @default.
- W2962853428 hasOpenAccess W2962853428 @default.
- W2962853428 hasPrimaryLocation W29628534281 @default.
- W2962853428 hasRelatedWork W1561927205 @default.
- W2962853428 hasRelatedWork W2482350142 @default.
- W2962853428 hasRelatedWork W2502115930 @default.
- W2962853428 hasRelatedWork W3126451824 @default.
- W2962853428 hasRelatedWork W3176240006 @default.
- W2962853428 hasRelatedWork W3191453585 @default.
- W2962853428 hasRelatedWork W4246396837 @default.
- W2962853428 hasRelatedWork W4285226279 @default.
- W2962853428 hasRelatedWork W4297672492 @default.
- W2962853428 hasRelatedWork W4310988119 @default.
- W2962853428 isParatext "false" @default.
- W2962853428 isRetracted "false" @default.
- W2962853428 magId "2962853428" @default.
- W2962853428 workType "article" @default.