Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962864047> ?p ?o ?g. }
- W2962864047 endingPage "2262" @default.
- W2962864047 startingPage "2248" @default.
- W2962864047 abstract "Facial landmark localization plays a critical role in face recognition and analysis. In this paper, we propose a novel cascaded backbone-branches fully convolutional neural network (BB-FCN) for rapidly and accurately localizing facial landmarks in unconstrained and cluttered settings. Our proposed BB-FCN generates facial landmark response maps directly from raw images without any preprocessing. BB-FCN follows a coarse-to-fine cascaded pipeline, which consists of a backbone network to roughly detect the locations of all facial landmarks and one branch network for each type of detected landmark to further refine its location. Furthermore, to facilitate the facial landmark localization under unconstrained settings, we propose a large-scale benchmark named SYSU16K, which contains 16 000 faces with large variations in pose, expression, illumination, and resolution. Extensive experimental evaluations demonstrate that our proposed BB-FCN can significantly outperform the state of the art under both constrained (i.e., within detected facial regions only) and unconstrained settings. We further confirm that high-quality facial landmarks localized with our proposed network can also improve the precision and recall of face detection." @default.
- W2962864047 created "2019-07-30" @default.
- W2962864047 creator A5042965510 @default.
- W2962864047 creator A5071959906 @default.
- W2962864047 creator A5072315367 @default.
- W2962864047 creator A5076341108 @default.
- W2962864047 creator A5079046860 @default.
- W2962864047 creator A5082076121 @default.
- W2962864047 date "2019-09-01" @default.
- W2962864047 modified "2023-10-16" @default.
- W2962864047 title "Facial Landmark Machines: A Backbone-Branches Architecture With Progressive Representation Learning" @default.
- W2962864047 cites W1849007038 @default.
- W2962864047 cites W1855204404 @default.
- W2962864047 cites W1896424170 @default.
- W2962864047 cites W1903029394 @default.
- W2962864047 cites W1934410531 @default.
- W2962864047 cites W1951319388 @default.
- W2962864047 cites W1963599662 @default.
- W2962864047 cites W1966822758 @default.
- W2962864047 cites W1976948919 @default.
- W2962864047 cites W1990937109 @default.
- W2962864047 cites W1991367009 @default.
- W2962864047 cites W1998294030 @default.
- W2962864047 cites W2012885984 @default.
- W2962864047 cites W2015268479 @default.
- W2962864047 cites W2034025266 @default.
- W2962864047 cites W2036868818 @default.
- W2962864047 cites W2037227137 @default.
- W2962864047 cites W204612701 @default.
- W2962864047 cites W2058961190 @default.
- W2962864047 cites W2076017598 @default.
- W2962864047 cites W2087681821 @default.
- W2962864047 cites W2088049833 @default.
- W2962864047 cites W2102605133 @default.
- W2962864047 cites W2111372597 @default.
- W2962864047 cites W2116277445 @default.
- W2962864047 cites W2124750300 @default.
- W2962864047 cites W2129210471 @default.
- W2962864047 cites W2133401711 @default.
- W2962864047 cites W2135132101 @default.
- W2962864047 cites W2143352446 @default.
- W2962864047 cites W2152826865 @default.
- W2962864047 cites W2153169342 @default.
- W2962864047 cites W2157285372 @default.
- W2962864047 cites W2164598857 @default.
- W2962864047 cites W2166694921 @default.
- W2962864047 cites W2209882149 @default.
- W2962864047 cites W2217527616 @default.
- W2962864047 cites W2241943627 @default.
- W2962864047 cites W2270657321 @default.
- W2962864047 cites W2337615249 @default.
- W2962864047 cites W2417750831 @default.
- W2962864047 cites W2437557374 @default.
- W2962864047 cites W2462523589 @default.
- W2962864047 cites W2465108587 @default.
- W2962864047 cites W2469547219 @default.
- W2962864047 cites W2473640056 @default.
- W2962864047 cites W2474575620 @default.
- W2962864047 cites W2487852963 @default.
- W2962864047 cites W2518599539 @default.
- W2962864047 cites W2520331172 @default.
- W2962864047 cites W2579152745 @default.
- W2962864047 cites W2740020909 @default.
- W2962864047 cites W2755672797 @default.
- W2962864047 cites W2771056126 @default.
- W2962864047 cites W2780034403 @default.
- W2962864047 cites W2798730128 @default.
- W2962864047 cites W2798814244 @default.
- W2962864047 cites W2808519136 @default.
- W2962864047 cites W2887748972 @default.
- W2962864047 cites W2890385714 @default.
- W2962864047 cites W2962860144 @default.
- W2962864047 cites W2962887041 @default.
- W2962864047 cites W2962925415 @default.
- W2962864047 cites W2963419579 @default.
- W2962864047 cites W2963544488 @default.
- W2962864047 cites W2963583792 @default.
- W2962864047 cites W2963721882 @default.
- W2962864047 cites W2963770578 @default.
- W2962864047 cites W2963951674 @default.
- W2962864047 cites W2964014798 @default.
- W2962864047 cites W2964309795 @default.
- W2962864047 cites W3101998545 @default.
- W2962864047 cites W3104792420 @default.
- W2962864047 cites W345900524 @default.
- W2962864047 cites W4252521223 @default.
- W2962864047 cites W845365781 @default.
- W2962864047 doi "https://doi.org/10.1109/tmm.2019.2902096" @default.
- W2962864047 hasPublicationYear "2019" @default.
- W2962864047 type Work @default.
- W2962864047 sameAs 2962864047 @default.
- W2962864047 citedByCount "27" @default.
- W2962864047 countsByYear W29628640472019 @default.
- W2962864047 countsByYear W29628640472020 @default.
- W2962864047 countsByYear W29628640472021 @default.
- W2962864047 countsByYear W29628640472022 @default.
- W2962864047 countsByYear W29628640472023 @default.
- W2962864047 crossrefType "journal-article" @default.