Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962880963> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2962880963 abstract "Stocks prices follow the Brownian motion process that moves in a random and erratic state making it impossible to determine the future price based on the historical performance of the stock. However, the availability of the historical data of stock prices can't be ignored as it might hold hidden patterns that manifest the behavior of investors as well as the market sentiments and political conditions. Thus, investors have adapted mathematical models of regression and neural network analysis to process the stock's historical data along with the traditional fundamental analysis in forecasting the trend of stock prices. Neural network models have changed the landscape of formulating informed decisions on how investors can minimize their risks on their investments. However, deep learning models are dependent on the different hyper-parameters such as epochs, number of nodes in hidden layers, and number of hidden layers in order to produce the best trend prediction model as applied in stock investments. Unfortunately, the available literature and empirical studies are limited specifically on the number of hidden layers of deep learning models. This study attempts to explore the appropriate number of hidden layers to optimize the accuracy of a trend prediction model in stock trading." @default.
- W2962880963 created "2019-07-30" @default.
- W2962880963 creator A5066340071 @default.
- W2962880963 date "2019-05-24" @default.
- W2962880963 modified "2023-09-23" @default.
- W2962880963 title "Development of a Deep Learning-LSTM Trend Prediction Model of Stock Prices" @default.
- W2962880963 cites W1680622244 @default.
- W2962880963 cites W1964668814 @default.
- W2962880963 cites W2042105482 @default.
- W2962880963 cites W2107878631 @default.
- W2962880963 cites W2371440349 @default.
- W2962880963 cites W2804175109 @default.
- W2962880963 cites W2805176379 @default.
- W2962880963 cites W3121186678 @default.
- W2962880963 cites W3124076537 @default.
- W2962880963 cites W4238404964 @default.
- W2962880963 doi "https://doi.org/10.1145/3335550.3335585" @default.
- W2962880963 hasPublicationYear "2019" @default.
- W2962880963 type Work @default.
- W2962880963 sameAs 2962880963 @default.
- W2962880963 citedByCount "0" @default.
- W2962880963 crossrefType "proceedings-article" @default.
- W2962880963 hasAuthorship W2962880963A5066340071 @default.
- W2962880963 hasConcept C101615488 @default.
- W2962880963 hasConcept C106159729 @default.
- W2962880963 hasConcept C108583219 @default.
- W2962880963 hasConcept C117245426 @default.
- W2962880963 hasConcept C119857082 @default.
- W2962880963 hasConcept C127413603 @default.
- W2962880963 hasConcept C131562839 @default.
- W2962880963 hasConcept C149782125 @default.
- W2962880963 hasConcept C151730666 @default.
- W2962880963 hasConcept C154945302 @default.
- W2962880963 hasConcept C162324750 @default.
- W2962880963 hasConcept C204036174 @default.
- W2962880963 hasConcept C2776256503 @default.
- W2962880963 hasConcept C2780299701 @default.
- W2962880963 hasConcept C2780762169 @default.
- W2962880963 hasConcept C3017618536 @default.
- W2962880963 hasConcept C41008148 @default.
- W2962880963 hasConcept C45804977 @default.
- W2962880963 hasConcept C50644808 @default.
- W2962880963 hasConcept C56739046 @default.
- W2962880963 hasConcept C68710425 @default.
- W2962880963 hasConcept C78519656 @default.
- W2962880963 hasConcept C86803240 @default.
- W2962880963 hasConceptScore W2962880963C101615488 @default.
- W2962880963 hasConceptScore W2962880963C106159729 @default.
- W2962880963 hasConceptScore W2962880963C108583219 @default.
- W2962880963 hasConceptScore W2962880963C117245426 @default.
- W2962880963 hasConceptScore W2962880963C119857082 @default.
- W2962880963 hasConceptScore W2962880963C127413603 @default.
- W2962880963 hasConceptScore W2962880963C131562839 @default.
- W2962880963 hasConceptScore W2962880963C149782125 @default.
- W2962880963 hasConceptScore W2962880963C151730666 @default.
- W2962880963 hasConceptScore W2962880963C154945302 @default.
- W2962880963 hasConceptScore W2962880963C162324750 @default.
- W2962880963 hasConceptScore W2962880963C204036174 @default.
- W2962880963 hasConceptScore W2962880963C2776256503 @default.
- W2962880963 hasConceptScore W2962880963C2780299701 @default.
- W2962880963 hasConceptScore W2962880963C2780762169 @default.
- W2962880963 hasConceptScore W2962880963C3017618536 @default.
- W2962880963 hasConceptScore W2962880963C41008148 @default.
- W2962880963 hasConceptScore W2962880963C45804977 @default.
- W2962880963 hasConceptScore W2962880963C50644808 @default.
- W2962880963 hasConceptScore W2962880963C56739046 @default.
- W2962880963 hasConceptScore W2962880963C68710425 @default.
- W2962880963 hasConceptScore W2962880963C78519656 @default.
- W2962880963 hasConceptScore W2962880963C86803240 @default.
- W2962880963 hasLocation W29628809631 @default.
- W2962880963 hasOpenAccess W2962880963 @default.
- W2962880963 hasPrimaryLocation W29628809631 @default.
- W2962880963 hasRelatedWork W1534650609 @default.
- W2962880963 hasRelatedWork W3157171776 @default.
- W2962880963 hasRelatedWork W4223943233 @default.
- W2962880963 hasRelatedWork W4225161397 @default.
- W2962880963 hasRelatedWork W4294760523 @default.
- W2962880963 hasRelatedWork W4312200629 @default.
- W2962880963 hasRelatedWork W4360585206 @default.
- W2962880963 hasRelatedWork W4364306694 @default.
- W2962880963 hasRelatedWork W4380075502 @default.
- W2962880963 hasRelatedWork W4380086463 @default.
- W2962880963 isParatext "false" @default.
- W2962880963 isRetracted "false" @default.
- W2962880963 magId "2962880963" @default.
- W2962880963 workType "article" @default.