Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962893256> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2962893256 endingPage "154" @default.
- W2962893256 startingPage "128" @default.
- W2962893256 abstract "Diabetes is a disease of the modern world. The modern lifestyle has led to unhealthy eating habits causing type 2 diabetes. Machine learning has gained a lot of popularity in the recent days. It has applications in various fields and has proven to be increasingly effective in the medical field. The purpose of this chapter is to predict the diabetes outcome of a person based on other factors or attributes. Various machine learning algorithms like logistic regression (LR), tuned and not tuned random forest (RF), and multilayer perceptron (MLP) have been used as classifiers for diabetes prediction. This chapter also presents a comparative study of these algorithms based on various performance metrics like accuracy, sensitivity, specificity, and F1 score." @default.
- W2962893256 created "2019-07-30" @default.
- W2962893256 creator A5006862687 @default.
- W2962893256 creator A5037160185 @default.
- W2962893256 creator A5059187910 @default.
- W2962893256 date "2020-01-01" @default.
- W2962893256 modified "2023-09-26" @default.
- W2962893256 title "Machine Learning in Python" @default.
- W2962893256 cites W1989022033 @default.
- W2962893256 cites W2078855524 @default.
- W2962893256 cites W2123380119 @default.
- W2962893256 cites W2344961857 @default.
- W2962893256 cites W2569214105 @default.
- W2962893256 cites W2581465409 @default.
- W2962893256 cites W2775450699 @default.
- W2962893256 cites W2807027008 @default.
- W2962893256 cites W807187018 @default.
- W2962893256 doi "https://doi.org/10.4018/978-1-5225-9902-9.ch008" @default.
- W2962893256 hasPublicationYear "2020" @default.
- W2962893256 type Work @default.
- W2962893256 sameAs 2962893256 @default.
- W2962893256 citedByCount "6" @default.
- W2962893256 countsByYear W29628932562020 @default.
- W2962893256 countsByYear W29628932562021 @default.
- W2962893256 countsByYear W29628932562022 @default.
- W2962893256 countsByYear W29628932562023 @default.
- W2962893256 crossrefType "book-chapter" @default.
- W2962893256 hasAuthorship W2962893256A5006862687 @default.
- W2962893256 hasAuthorship W2962893256A5037160185 @default.
- W2962893256 hasAuthorship W2962893256A5059187910 @default.
- W2962893256 hasConcept C111919701 @default.
- W2962893256 hasConcept C119857082 @default.
- W2962893256 hasConcept C151956035 @default.
- W2962893256 hasConcept C154945302 @default.
- W2962893256 hasConcept C15744967 @default.
- W2962893256 hasConcept C169258074 @default.
- W2962893256 hasConcept C179717631 @default.
- W2962893256 hasConcept C2780586970 @default.
- W2962893256 hasConcept C41008148 @default.
- W2962893256 hasConcept C50644808 @default.
- W2962893256 hasConcept C519991488 @default.
- W2962893256 hasConcept C60908668 @default.
- W2962893256 hasConcept C77805123 @default.
- W2962893256 hasConceptScore W2962893256C111919701 @default.
- W2962893256 hasConceptScore W2962893256C119857082 @default.
- W2962893256 hasConceptScore W2962893256C151956035 @default.
- W2962893256 hasConceptScore W2962893256C154945302 @default.
- W2962893256 hasConceptScore W2962893256C15744967 @default.
- W2962893256 hasConceptScore W2962893256C169258074 @default.
- W2962893256 hasConceptScore W2962893256C179717631 @default.
- W2962893256 hasConceptScore W2962893256C2780586970 @default.
- W2962893256 hasConceptScore W2962893256C41008148 @default.
- W2962893256 hasConceptScore W2962893256C50644808 @default.
- W2962893256 hasConceptScore W2962893256C519991488 @default.
- W2962893256 hasConceptScore W2962893256C60908668 @default.
- W2962893256 hasConceptScore W2962893256C77805123 @default.
- W2962893256 hasLocation W29628932561 @default.
- W2962893256 hasOpenAccess W2962893256 @default.
- W2962893256 hasPrimaryLocation W29628932561 @default.
- W2962893256 hasRelatedWork W2979979539 @default.
- W2962893256 hasRelatedWork W3097220695 @default.
- W2962893256 hasRelatedWork W3211546796 @default.
- W2962893256 hasRelatedWork W4200196661 @default.
- W2962893256 hasRelatedWork W4200338791 @default.
- W2962893256 hasRelatedWork W4206558754 @default.
- W2962893256 hasRelatedWork W4220975826 @default.
- W2962893256 hasRelatedWork W4249229055 @default.
- W2962893256 hasRelatedWork W4280611221 @default.
- W2962893256 hasRelatedWork W4316082230 @default.
- W2962893256 isParatext "false" @default.
- W2962893256 isRetracted "false" @default.
- W2962893256 magId "2962893256" @default.
- W2962893256 workType "book-chapter" @default.