Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962900979> ?p ?o ?g. }
- W2962900979 endingPage "119" @default.
- W2962900979 startingPage "105" @default.
- W2962900979 abstract "Detailed whole brain segmentation is an essential quantitative technique in medical image analysis, which provides a non-invasive way of measuring brain regions from a clinical acquired structural magnetic resonance imaging (MRI). Recently, deep convolution neural network (CNN) has been applied to whole brain segmentation. However, restricted by current GPU memory, 2D based methods, downsampling based 3D CNN methods, and patch-based high-resolution 3D CNN methods have been the de facto standard solutions. 3D patch-based high resolution methods typically yield superior performance among CNN approaches on detailed whole brain segmentation (>100 labels), however, whose performance are still commonly inferior compared with state-of-the-art multi-atlas segmentation methods (MAS) due to the following challenges: (1) a single network is typically used to learn both spatial and contextual information for the patches, (2) limited manually traced whole brain volumes are available (typically less than 50) for training a network. In this work, we propose the spatially localized atlas network tiles (SLANT) method to distribute multiple independent 3D fully convolutional networks (FCN) for high-resolution whole brain segmentation. To address the first challenge, multiple spatially distributed networks were used in the SLANT method, in which each network learned contextual information for a fixed spatial location. To address the second challenge, auxiliary labels on 5111 initially unlabeled scans were created by multi-atlas segmentation for training. Since the method integrated multiple traditional medical image processing methods with deep learning, we developed a containerized pipeline to deploy the end-to-end solution. From the results, the proposed method achieved superior performance compared with multi-atlas segmentation methods, while reducing the computational time from >30 h to 15 min. The method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg)." @default.
- W2962900979 created "2019-07-30" @default.
- W2962900979 creator A5003112344 @default.
- W2962900979 creator A5004320806 @default.
- W2962900979 creator A5042127138 @default.
- W2962900979 creator A5048972725 @default.
- W2962900979 creator A5051962064 @default.
- W2962900979 creator A5055625757 @default.
- W2962900979 creator A5067191302 @default.
- W2962900979 creator A5075735203 @default.
- W2962900979 creator A5077742771 @default.
- W2962900979 creator A5087883340 @default.
- W2962900979 date "2019-07-01" @default.
- W2962900979 modified "2023-10-13" @default.
- W2962900979 title "3D whole brain segmentation using spatially localized atlas network tiles" @default.
- W2962900979 cites W125636640 @default.
- W2962900979 cites W1667869507 @default.
- W2962900979 cites W1954335072 @default.
- W2962900979 cites W1969094805 @default.
- W2962900979 cites W1969257438 @default.
- W2962900979 cites W1970928383 @default.
- W2962900979 cites W1978688988 @default.
- W2962900979 cites W1987153816 @default.
- W2962900979 cites W2000585255 @default.
- W2962900979 cites W2010587020 @default.
- W2962900979 cites W2014105136 @default.
- W2962900979 cites W2014736310 @default.
- W2962900979 cites W2015583343 @default.
- W2962900979 cites W2018662705 @default.
- W2962900979 cites W2032377318 @default.
- W2962900979 cites W2049247209 @default.
- W2962900979 cites W2057332541 @default.
- W2962900979 cites W2059961245 @default.
- W2962900979 cites W2066839705 @default.
- W2962900979 cites W2069331971 @default.
- W2962900979 cites W2078237160 @default.
- W2962900979 cites W2079158221 @default.
- W2962900979 cites W2085091083 @default.
- W2962900979 cites W2093723730 @default.
- W2962900979 cites W2102099319 @default.
- W2962900979 cites W2102595307 @default.
- W2962900979 cites W2107956652 @default.
- W2962900979 cites W2108707886 @default.
- W2962900979 cites W2117340355 @default.
- W2962900979 cites W2118386984 @default.
- W2962900979 cites W2128806031 @default.
- W2962900979 cites W2131104747 @default.
- W2962900979 cites W2136145485 @default.
- W2962900979 cites W2142456468 @default.
- W2962900979 cites W2147555557 @default.
- W2962900979 cites W2148157540 @default.
- W2962900979 cites W2148347694 @default.
- W2962900979 cites W2150534249 @default.
- W2962900979 cites W2156926884 @default.
- W2962900979 cites W2162140684 @default.
- W2962900979 cites W2163595993 @default.
- W2962900979 cites W2170500377 @default.
- W2962900979 cites W2589647984 @default.
- W2962900979 cites W2607256519 @default.
- W2962900979 cites W2752249151 @default.
- W2962900979 cites W2802349450 @default.
- W2962900979 cites W2804247377 @default.
- W2962900979 cites W4252684946 @default.
- W2962900979 cites W989272091 @default.
- W2962900979 doi "https://doi.org/10.1016/j.neuroimage.2019.03.041" @default.
- W2962900979 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6536356" @default.
- W2962900979 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30910724" @default.
- W2962900979 hasPublicationYear "2019" @default.
- W2962900979 type Work @default.
- W2962900979 sameAs 2962900979 @default.
- W2962900979 citedByCount "156" @default.
- W2962900979 countsByYear W29629009792012 @default.
- W2962900979 countsByYear W29629009792019 @default.
- W2962900979 countsByYear W29629009792020 @default.
- W2962900979 countsByYear W29629009792021 @default.
- W2962900979 countsByYear W29629009792022 @default.
- W2962900979 countsByYear W29629009792023 @default.
- W2962900979 crossrefType "journal-article" @default.
- W2962900979 hasAuthorship W2962900979A5003112344 @default.
- W2962900979 hasAuthorship W2962900979A5004320806 @default.
- W2962900979 hasAuthorship W2962900979A5042127138 @default.
- W2962900979 hasAuthorship W2962900979A5048972725 @default.
- W2962900979 hasAuthorship W2962900979A5051962064 @default.
- W2962900979 hasAuthorship W2962900979A5055625757 @default.
- W2962900979 hasAuthorship W2962900979A5067191302 @default.
- W2962900979 hasAuthorship W2962900979A5075735203 @default.
- W2962900979 hasAuthorship W2962900979A5077742771 @default.
- W2962900979 hasAuthorship W2962900979A5087883340 @default.
- W2962900979 hasBestOaLocation W29629009791 @default.
- W2962900979 hasConcept C108583219 @default.
- W2962900979 hasConcept C110384440 @default.
- W2962900979 hasConcept C115961682 @default.
- W2962900979 hasConcept C151730666 @default.
- W2962900979 hasConcept C153180895 @default.
- W2962900979 hasConcept C154945302 @default.
- W2962900979 hasConcept C199360897 @default.
- W2962900979 hasConcept C2776673561 @default.
- W2962900979 hasConcept C2780972224 @default.