Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962902015> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2962902015 abstract "Channel modeling is a critical topic when considering accurately designing or evaluating the performance of a communications system. Most prior work in designing or learning new modulation schemes has focused on using simplified analytic channel models such as additive white Gaussian noise (AWGN), Rayleigh fading channels or other similar compact parametric models. In this paper, we extend recent work training generative adversarial networks (GANs) to approximate wireless channel responses to more accurately reflect the probability distribution functions (PDFs) of stochastic channel behaviors. We introduce the use of variational GANs to provide appropriate architecture and loss functions which accurately capture these stochastic behaviors. Finally, we illustrate why prior GAN-based methods failed to accurately capture these behaviors and share results illustrating the performance of such as system over a range of complex realistic channel effects." @default.
- W2962902015 created "2019-07-30" @default.
- W2962902015 creator A5018962806 @default.
- W2962902015 creator A5022671008 @default.
- W2962902015 creator A5027960047 @default.
- W2962902015 date "2019-02-01" @default.
- W2962902015 modified "2023-10-17" @default.
- W2962902015 title "Approximating the Void: Learning Stochastic Channel Models from Observation with Variational Generative Adversarial Networks" @default.
- W2962902015 cites W2072079297 @default.
- W2962902015 cites W2734408173 @default.
- W2962902015 cites W2964324349 @default.
- W2962902015 doi "https://doi.org/10.1109/iccnc.2019.8685573" @default.
- W2962902015 hasPublicationYear "2019" @default.
- W2962902015 type Work @default.
- W2962902015 sameAs 2962902015 @default.
- W2962902015 citedByCount "58" @default.
- W2962902015 countsByYear W29629020152019 @default.
- W2962902015 countsByYear W29629020152020 @default.
- W2962902015 countsByYear W29629020152021 @default.
- W2962902015 countsByYear W29629020152022 @default.
- W2962902015 countsByYear W29629020152023 @default.
- W2962902015 crossrefType "proceedings-article" @default.
- W2962902015 hasAuthorship W2962902015A5018962806 @default.
- W2962902015 hasAuthorship W2962902015A5022671008 @default.
- W2962902015 hasAuthorship W2962902015A5027960047 @default.
- W2962902015 hasBestOaLocation W29629020152 @default.
- W2962902015 hasConcept C105795698 @default.
- W2962902015 hasConcept C11413529 @default.
- W2962902015 hasConcept C117251300 @default.
- W2962902015 hasConcept C119857082 @default.
- W2962902015 hasConcept C126255220 @default.
- W2962902015 hasConcept C127162648 @default.
- W2962902015 hasConcept C127413603 @default.
- W2962902015 hasConcept C146978453 @default.
- W2962902015 hasConcept C154945302 @default.
- W2962902015 hasConcept C169334058 @default.
- W2962902015 hasConcept C204323151 @default.
- W2962902015 hasConcept C24574437 @default.
- W2962902015 hasConcept C33923547 @default.
- W2962902015 hasConcept C39890363 @default.
- W2962902015 hasConcept C41008148 @default.
- W2962902015 hasConcept C56985126 @default.
- W2962902015 hasConcept C76155785 @default.
- W2962902015 hasConcept C80444323 @default.
- W2962902015 hasConcept C81978471 @default.
- W2962902015 hasConceptScore W2962902015C105795698 @default.
- W2962902015 hasConceptScore W2962902015C11413529 @default.
- W2962902015 hasConceptScore W2962902015C117251300 @default.
- W2962902015 hasConceptScore W2962902015C119857082 @default.
- W2962902015 hasConceptScore W2962902015C126255220 @default.
- W2962902015 hasConceptScore W2962902015C127162648 @default.
- W2962902015 hasConceptScore W2962902015C127413603 @default.
- W2962902015 hasConceptScore W2962902015C146978453 @default.
- W2962902015 hasConceptScore W2962902015C154945302 @default.
- W2962902015 hasConceptScore W2962902015C169334058 @default.
- W2962902015 hasConceptScore W2962902015C204323151 @default.
- W2962902015 hasConceptScore W2962902015C24574437 @default.
- W2962902015 hasConceptScore W2962902015C33923547 @default.
- W2962902015 hasConceptScore W2962902015C39890363 @default.
- W2962902015 hasConceptScore W2962902015C41008148 @default.
- W2962902015 hasConceptScore W2962902015C56985126 @default.
- W2962902015 hasConceptScore W2962902015C76155785 @default.
- W2962902015 hasConceptScore W2962902015C80444323 @default.
- W2962902015 hasConceptScore W2962902015C81978471 @default.
- W2962902015 hasLocation W29629020151 @default.
- W2962902015 hasLocation W29629020152 @default.
- W2962902015 hasOpenAccess W2962902015 @default.
- W2962902015 hasPrimaryLocation W29629020151 @default.
- W2962902015 hasRelatedWork W1933396347 @default.
- W2962902015 hasRelatedWork W2003797678 @default.
- W2962902015 hasRelatedWork W2045555184 @default.
- W2962902015 hasRelatedWork W2095618366 @default.
- W2962902015 hasRelatedWork W2136142136 @default.
- W2962902015 hasRelatedWork W2339430231 @default.
- W2962902015 hasRelatedWork W2535219652 @default.
- W2962902015 hasRelatedWork W2603927818 @default.
- W2962902015 hasRelatedWork W2889090823 @default.
- W2962902015 hasRelatedWork W780524361 @default.
- W2962902015 isParatext "false" @default.
- W2962902015 isRetracted "false" @default.
- W2962902015 magId "2962902015" @default.
- W2962902015 workType "article" @default.