Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962940229> ?p ?o ?g. }
- W2962940229 endingPage "221" @default.
- W2962940229 startingPage "212" @default.
- W2962940229 abstract "Abstract Direct prediction of material properties from microstructures through statistical models has shown to be a potential approach to accelerating computational material design with large design spaces. However, statistical modeling of highly nonlinear mappings defined on high-dimensional microstructure spaces is known to be data-demanding. Thus, the added value of such predictive models diminishes in common cases where material samples (in forms of 2D or 3D microstructures) become costly to acquire either experimentally or computationally. To this end, we propose a generative machine learning model that creates an arbitrary amount of artificial material samples with negligible computation cost, when trained on only a limited amount of authentic samples. The key contribution of this work is the introduction of a morphology constraint to the training of the generative model, that enforces the resultant artificial material samples to have the same morphology distribution as the authentic ones. We show empirically that the proposed model creates artificial samples that better match with the authentic ones in material property distributions than those generated from a state-of-the-art Markov Random Field model, and thus is more effective at improving the prediction performance of a predictive structure-property model." @default.
- W2962940229 created "2019-07-30" @default.
- W2962940229 creator A5038879550 @default.
- W2962940229 creator A5057827568 @default.
- W2962940229 creator A5060501596 @default.
- W2962940229 creator A5066102558 @default.
- W2962940229 creator A5083953117 @default.
- W2962940229 date "2018-07-01" @default.
- W2962940229 modified "2023-10-03" @default.
- W2962940229 title "Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model" @default.
- W2962940229 cites W1576462183 @default.
- W2962940229 cites W1928584567 @default.
- W2962940229 cites W1967467534 @default.
- W2962940229 cites W1968121322 @default.
- W2962940229 cites W1970193514 @default.
- W2962940229 cites W1970221866 @default.
- W2962940229 cites W1976364472 @default.
- W2962940229 cites W1987091162 @default.
- W2962940229 cites W1992096694 @default.
- W2962940229 cites W1992985800 @default.
- W2962940229 cites W1993089263 @default.
- W2962940229 cites W1994497938 @default.
- W2962940229 cites W1996499394 @default.
- W2962940229 cites W1997425132 @default.
- W2962940229 cites W2004959091 @default.
- W2962940229 cites W2020997618 @default.
- W2962940229 cites W2021842767 @default.
- W2962940229 cites W2025768430 @default.
- W2962940229 cites W2036058479 @default.
- W2962940229 cites W2037364111 @default.
- W2962940229 cites W2044012801 @default.
- W2962940229 cites W2045656833 @default.
- W2962940229 cites W2046158726 @default.
- W2962940229 cites W2055138897 @default.
- W2962940229 cites W2055178030 @default.
- W2962940229 cites W2060286491 @default.
- W2962940229 cites W2065131831 @default.
- W2962940229 cites W2073958030 @default.
- W2962940229 cites W2079515398 @default.
- W2962940229 cites W2083149950 @default.
- W2962940229 cites W2086774128 @default.
- W2962940229 cites W2087956818 @default.
- W2962940229 cites W2091785490 @default.
- W2962940229 cites W2092852664 @default.
- W2962940229 cites W2095913453 @default.
- W2962940229 cites W2097374412 @default.
- W2962940229 cites W2102120659 @default.
- W2962940229 cites W2103768595 @default.
- W2962940229 cites W2108598243 @default.
- W2962940229 cites W2123306226 @default.
- W2962940229 cites W2131219543 @default.
- W2962940229 cites W2145514331 @default.
- W2962940229 cites W2150764796 @default.
- W2962940229 cites W2155948495 @default.
- W2962940229 cites W2194775991 @default.
- W2962940229 cites W2291908932 @default.
- W2962940229 cites W2318376321 @default.
- W2962940229 cites W2475287302 @default.
- W2962940229 cites W2760710953 @default.
- W2962940229 cites W2963580633 @default.
- W2962940229 cites W4231109964 @default.
- W2962940229 cites W4249563627 @default.
- W2962940229 cites W4254038553 @default.
- W2962940229 cites W891187222 @default.
- W2962940229 doi "https://doi.org/10.1016/j.commatsci.2018.03.074" @default.
- W2962940229 hasPublicationYear "2018" @default.
- W2962940229 type Work @default.
- W2962940229 sameAs 2962940229 @default.
- W2962940229 citedByCount "131" @default.
- W2962940229 countsByYear W29629402292018 @default.
- W2962940229 countsByYear W29629402292019 @default.
- W2962940229 countsByYear W29629402292020 @default.
- W2962940229 countsByYear W29629402292021 @default.
- W2962940229 countsByYear W29629402292022 @default.
- W2962940229 countsByYear W29629402292023 @default.
- W2962940229 crossrefType "journal-article" @default.
- W2962940229 hasAuthorship W2962940229A5038879550 @default.
- W2962940229 hasAuthorship W2962940229A5057827568 @default.
- W2962940229 hasAuthorship W2962940229A5060501596 @default.
- W2962940229 hasAuthorship W2962940229A5066102558 @default.
- W2962940229 hasAuthorship W2962940229A5083953117 @default.
- W2962940229 hasBestOaLocation W29629402292 @default.
- W2962940229 hasConcept C127313418 @default.
- W2962940229 hasConcept C151730666 @default.
- W2962940229 hasConcept C154945302 @default.
- W2962940229 hasConcept C167966045 @default.
- W2962940229 hasConcept C171250308 @default.
- W2962940229 hasConcept C186060115 @default.
- W2962940229 hasConcept C192562407 @default.
- W2962940229 hasConcept C39890363 @default.
- W2962940229 hasConcept C41008148 @default.
- W2962940229 hasConcept C499950583 @default.
- W2962940229 hasConcept C50644808 @default.
- W2962940229 hasConcept C81363708 @default.
- W2962940229 hasConcept C86803240 @default.
- W2962940229 hasConceptScore W2962940229C127313418 @default.
- W2962940229 hasConceptScore W2962940229C151730666 @default.
- W2962940229 hasConceptScore W2962940229C154945302 @default.