Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962958774> ?p ?o ?g. }
- W2962958774 startingPage "152" @default.
- W2962958774 abstract "We initiate the study of inverse problems in approximate uniform generation, focusing on uniform generation of satisfying assignments of various types of Boolean functions. In such an inverse problem, the algorithm is given uniform random satisfying assignments of an unknown function f belonging to a class C of Boolean functions (such as linear threshold functions or polynomial-size DNF formulas), and the goal is to output a probability distribution D which is -close, in total variation distance, to the uniform distribution over f−1(1). Problems of this sort comprise a natural type of unsupervised learning problem in which the unknown distribution to be learned is the uniform distribution over satisfying assignments of an unknown function f ∈ C. Positive results: We prove a general positive result establishing sufficient conditions for efficient inverse approximate uniform generation for a class C. We define a new type of algorithm called a densifier for C, and show (roughly speaking) how to combine (i) a densifier, (ii) an approximate counting / uniform generation algorithm, and (iii) a Statistical Query learning algorithm, to obtain an inverse approximate uniform generation algorithm. We apply this general result to obtain a poly(n, 1/ )-time inverse approximate uniform generation algorithm for the class of n-variable linear threshold functions (halfspaces); and a quasipoly(n, 1/ )-time inverse approximate uniform generation algorithm for the class of poly(n)-size DNF formulas. Negative results: We prove a general negative result establishing that the existence of certain types of signature schemes in cryptography implies the hardness of certain inverse approximate uniform generation problems. We instantiate this negative result with known signature schemes from the cryptographic literature to prove (under a plausible cryptographic hardness assumption) that there are no subexponential-time inverse approximate uniform generation algorithms for 3-CNF formulas; for intersections of two halfspaces; for degree-2 polynomial threshold functions; and for monotone 2-CNF formulas. Finally, we show that there is no general relationship between the complexity of the “forward” approximate uniform generation problem and the complexity of the inverse problem for a class C – it is possible for either one to be easy while the other is hard. In one direction, we show that the existence of certain types of Message Authentication Codes (MACs) in cryptography implies the hardness of certain corresponding inverse approximate uniform generation problems, and we combine this general result with recent MAC constructions from the cryptographic literature to show (under a plausible cryptographic hardness assumption) that there is a class C for which the “forward” approximate uniform generation problem is easy but the inverse approximate uniform generation problem is computationally hard. In the other direction, we also show (assuming the GRAPH ISOMORPHISM problem is computationally hard) that there is a problem for which inverse approximate uniform generation is easy but “forward” approximate uniform generation is computationally hard. ∗anindya@cs.berkeley.edu. Research supported by NSF award CCF-0915929 and Umesh Vazirani’s Templeton Foundation Grant 21674. †ilias.d@ed.ac.uk. Most of this work was done while the author was at UC Berkeley supported by a Simons Postdoctoral Fellowship. ‡rocco@cs.columbia.edu. Supported by NSF grant CCF-1115703, CCF-0915929. ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Report No. 152 (2012)" @default.
- W2962958774 created "2019-07-30" @default.
- W2962958774 creator A5014866889 @default.
- W2962958774 creator A5054966819 @default.
- W2962958774 creator A5081127804 @default.
- W2962958774 date "2012-11-07" @default.
- W2962958774 modified "2023-09-26" @default.
- W2962958774 title "Inverse Problems in Approximate Uniform Generation" @default.
- W2962958774 cites W1517311456 @default.
- W2962958774 cites W1547442962 @default.
- W2962958774 cites W1568514840 @default.
- W2962958774 cites W1585566614 @default.
- W2962958774 cites W1609370892 @default.
- W2962958774 cites W1735349781 @default.
- W2962958774 cites W1760474993 @default.
- W2962958774 cites W1827697876 @default.
- W2962958774 cites W1968399077 @default.
- W2962958774 cites W1972917397 @default.
- W2962958774 cites W1974232544 @default.
- W2962958774 cites W1980869082 @default.
- W2962958774 cites W1985792472 @default.
- W2962958774 cites W1995897489 @default.
- W2962958774 cites W2003554015 @default.
- W2962958774 cites W2003979824 @default.
- W2962958774 cites W2005107874 @default.
- W2962958774 cites W2018099718 @default.
- W2962958774 cites W2023683873 @default.
- W2962958774 cites W2028368516 @default.
- W2962958774 cites W2033040247 @default.
- W2962958774 cites W2039533113 @default.
- W2962958774 cites W2047143747 @default.
- W2962958774 cites W2047430378 @default.
- W2962958774 cites W2057512592 @default.
- W2962958774 cites W2057648657 @default.
- W2962958774 cites W2065151783 @default.
- W2962958774 cites W2066720893 @default.
- W2962958774 cites W2068189841 @default.
- W2962958774 cites W2071927551 @default.
- W2962958774 cites W2072211488 @default.
- W2962958774 cites W2077202644 @default.
- W2962958774 cites W2094500233 @default.
- W2962958774 cites W2098104887 @default.
- W2962958774 cites W2100440346 @default.
- W2962958774 cites W2106285343 @default.
- W2962958774 cites W2106332032 @default.
- W2962958774 cites W2109260999 @default.
- W2962958774 cites W2110503949 @default.
- W2962958774 cites W2118547397 @default.
- W2962958774 cites W2122170585 @default.
- W2962958774 cites W2124052428 @default.
- W2962958774 cites W2125903279 @default.
- W2962958774 cites W2128020980 @default.
- W2962958774 cites W2130652100 @default.
- W2962958774 cites W2131798840 @default.
- W2962958774 cites W2146852149 @default.
- W2962958774 cites W2148139859 @default.
- W2962958774 cites W2152521692 @default.
- W2962958774 cites W2155597422 @default.
- W2962958774 cites W2161611531 @default.
- W2962958774 cites W2166566648 @default.
- W2962958774 cites W2256202 @default.
- W2962958774 cites W2279676320 @default.
- W2962958774 cites W2913985088 @default.
- W2962958774 cites W3111890340 @default.
- W2962958774 cites W3184572569 @default.
- W2962958774 hasPublicationYear "2012" @default.
- W2962958774 type Work @default.
- W2962958774 sameAs 2962958774 @default.
- W2962958774 citedByCount "2" @default.
- W2962958774 countsByYear W29629587742013 @default.
- W2962958774 countsByYear W29629587742014 @default.
- W2962958774 crossrefType "journal-article" @default.
- W2962958774 hasAuthorship W2962958774A5014866889 @default.
- W2962958774 hasAuthorship W2962958774A5054966819 @default.
- W2962958774 hasAuthorship W2962958774A5081127804 @default.
- W2962958774 hasConcept C105795698 @default.
- W2962958774 hasConcept C108882938 @default.
- W2962958774 hasConcept C110121322 @default.
- W2962958774 hasConcept C11413529 @default.
- W2962958774 hasConcept C114614502 @default.
- W2962958774 hasConcept C118615104 @default.
- W2962958774 hasConcept C134306372 @default.
- W2962958774 hasConcept C14036430 @default.
- W2962958774 hasConcept C140528856 @default.
- W2962958774 hasConcept C154945302 @default.
- W2962958774 hasConcept C178489894 @default.
- W2962958774 hasConcept C187455244 @default.
- W2962958774 hasConcept C207467116 @default.
- W2962958774 hasConcept C2524010 @default.
- W2962958774 hasConcept C2777212361 @default.
- W2962958774 hasConcept C311688 @default.
- W2962958774 hasConcept C33923547 @default.
- W2962958774 hasConcept C41008148 @default.
- W2962958774 hasConcept C78458016 @default.
- W2962958774 hasConcept C86803240 @default.
- W2962958774 hasConcept C90119067 @default.
- W2962958774 hasConceptScore W2962958774C105795698 @default.
- W2962958774 hasConceptScore W2962958774C108882938 @default.
- W2962958774 hasConceptScore W2962958774C110121322 @default.