Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962960377> ?p ?o ?g. }
- W2962960377 abstract "Estimating accurate depth from a single image is challenging because it is an ill-posed problem as infinitely many 3D scenes can be projected to the same 2D scene. However, recent works based on deep convolutional neural networks show great progress with plausible results. The convolutional neural networks are generally composed of two parts: an encoder for dense feature extraction and a decoder for predicting the desired depth. In the encoder-decoder schemes, repeated strided convolution and spatial pooling layers lower the spatial resolution of transitional outputs, and several techniques such as skip connections or multi-layer deconvolutional networks are adopted to recover back to the original resolution for effective dense prediction. In this paper, for more effective guidance of densely encoded features to the desired depth prediction, we propose a network architecture that utilizes novel local planar guidance layers located at multiple stages in the decoding phase. We show that the proposed method outperforms the state-of-the-art works with significant margin evaluating on challenging benchmarks. We also provide results from an ablation study to validate the effectiveness of the proposed method." @default.
- W2962960377 created "2019-07-30" @default.
- W2962960377 creator A5030410269 @default.
- W2962960377 creator A5069566404 @default.
- W2962960377 creator A5086370210 @default.
- W2962960377 creator A5089463332 @default.
- W2962960377 date "2019-07-24" @default.
- W2962960377 modified "2023-09-27" @default.
- W2962960377 title "From big to small: Multi-scale local planar guidance for monocular depth estimation" @default.
- W2962960377 cites W125693051 @default.
- W2962960377 cites W1522301498 @default.
- W2962960377 cites W1686810756 @default.
- W2962960377 cites W1803059841 @default.
- W2962960377 cites W1899309388 @default.
- W2962960377 cites W1905829557 @default.
- W2962960377 cites W1915250530 @default.
- W2962960377 cites W2066085919 @default.
- W2962960377 cites W2102492119 @default.
- W2962960377 cites W2104974755 @default.
- W2962960377 cites W2115579991 @default.
- W2962960377 cites W2117539524 @default.
- W2962960377 cites W2124907686 @default.
- W2962960377 cites W2132947399 @default.
- W2962960377 cites W2158211626 @default.
- W2962960377 cites W2171740948 @default.
- W2962960377 cites W2176412452 @default.
- W2962960377 cites W2194775991 @default.
- W2962960377 cites W2300779272 @default.
- W2962960377 cites W2303211814 @default.
- W2962960377 cites W2336968928 @default.
- W2962960377 cites W2340897893 @default.
- W2962960377 cites W2427448504 @default.
- W2962960377 cites W2436453945 @default.
- W2962960377 cites W2484274495 @default.
- W2962960377 cites W2520707372 @default.
- W2962960377 cites W2535388113 @default.
- W2962960377 cites W2549139847 @default.
- W2962960377 cites W2559178909 @default.
- W2962960377 cites W2593414960 @default.
- W2962960377 cites W2605938684 @default.
- W2962960377 cites W2798727000 @default.
- W2962960377 cites W2798927139 @default.
- W2962960377 cites W2799213142 @default.
- W2962960377 cites W2949208911 @default.
- W2962960377 cites W2949634581 @default.
- W2962960377 cites W2962741876 @default.
- W2962960377 cites W2962807621 @default.
- W2962960377 cites W2962952719 @default.
- W2962960377 cites W2963163009 @default.
- W2962960377 cites W2963446712 @default.
- W2962960377 cites W2963488291 @default.
- W2962960377 cites W2963591054 @default.
- W2962960377 cites W2963654727 @default.
- W2962960377 cites W2963825193 @default.
- W2962960377 cites W2963906250 @default.
- W2962960377 cites W2970971581 @default.
- W2962960377 cites W2990946490 @default.
- W2962960377 cites W48578105 @default.
- W2962960377 hasPublicationYear "2019" @default.
- W2962960377 type Work @default.
- W2962960377 sameAs 2962960377 @default.
- W2962960377 citedByCount "92" @default.
- W2962960377 countsByYear W29629603772019 @default.
- W2962960377 countsByYear W29629603772020 @default.
- W2962960377 countsByYear W29629603772021 @default.
- W2962960377 countsByYear W29629603772022 @default.
- W2962960377 crossrefType "posted-content" @default.
- W2962960377 hasAuthorship W2962960377A5030410269 @default.
- W2962960377 hasAuthorship W2962960377A5069566404 @default.
- W2962960377 hasAuthorship W2962960377A5086370210 @default.
- W2962960377 hasAuthorship W2962960377A5089463332 @default.
- W2962960377 hasConcept C108583219 @default.
- W2962960377 hasConcept C111919701 @default.
- W2962960377 hasConcept C11413529 @default.
- W2962960377 hasConcept C118505674 @default.
- W2962960377 hasConcept C119857082 @default.
- W2962960377 hasConcept C121332964 @default.
- W2962960377 hasConcept C138885662 @default.
- W2962960377 hasConcept C153180895 @default.
- W2962960377 hasConcept C154945302 @default.
- W2962960377 hasConcept C2776214188 @default.
- W2962960377 hasConcept C2776401178 @default.
- W2962960377 hasConcept C2778755073 @default.
- W2962960377 hasConcept C31972630 @default.
- W2962960377 hasConcept C41008148 @default.
- W2962960377 hasConcept C41895202 @default.
- W2962960377 hasConcept C45347329 @default.
- W2962960377 hasConcept C50644808 @default.
- W2962960377 hasConcept C52622490 @default.
- W2962960377 hasConcept C57273362 @default.
- W2962960377 hasConcept C62520636 @default.
- W2962960377 hasConcept C65909025 @default.
- W2962960377 hasConcept C70437156 @default.
- W2962960377 hasConcept C774472 @default.
- W2962960377 hasConcept C81363708 @default.
- W2962960377 hasConceptScore W2962960377C108583219 @default.
- W2962960377 hasConceptScore W2962960377C111919701 @default.
- W2962960377 hasConceptScore W2962960377C11413529 @default.
- W2962960377 hasConceptScore W2962960377C118505674 @default.
- W2962960377 hasConceptScore W2962960377C119857082 @default.