Matches in SemOpenAlex for { <https://semopenalex.org/work/W2962975612> ?p ?o ?g. }
- W2962975612 abstract "This paper addresses the following questions pertaining to the intrinsic dimensionality of any given image representation: (i) estimate its intrinsic dimensionality, (ii) develop a deep neural network based non-linear mapping, dubbed DeepMDS, that transforms the ambient representation to the minimal intrinsic space, and (iii) validate the veracity of the mapping through image matching in the intrinsic space. Experiments on benchmark image datasets (LFW, IJB-C and ImageNet-100) reveal that the intrinsic dimensionality of deep neural network representations is significantly lower than the dimensionality of the ambient features. For instance, SphereFace's 512-dim face representation and ResNet's 512-dim image representation have an intrinsic dimensionality of 16 and 19 respectively. Further, the DeepMDS mapping is able to obtain a representation of significantly lower dimensionality while maintaining discriminative ability to a large extent, 59.75% TAR @ 0.1% FAR in 16-dim vs 71.26% TAR in 512-dim on IJB-C and a Top-1 accuracy of 77.0% at 19-dim vs 83.4% at 512-dim on ImageNet-100." @default.
- W2962975612 created "2019-07-30" @default.
- W2962975612 creator A5007029060 @default.
- W2962975612 creator A5031717929 @default.
- W2962975612 creator A5032803479 @default.
- W2962975612 date "2019-06-01" @default.
- W2962975612 modified "2023-10-14" @default.
- W2962975612 title "On the Intrinsic Dimensionality of Image Representations" @default.
- W2962975612 cites W1545641654 @default.
- W2962975612 cites W1921147789 @default.
- W2962975612 cites W1964414683 @default.
- W2962975612 cites W2001141328 @default.
- W2962975612 cites W2022845879 @default.
- W2962975612 cites W2025768430 @default.
- W2962975612 cites W2028569884 @default.
- W2962975612 cites W2053186076 @default.
- W2962975612 cites W2097308346 @default.
- W2962975612 cites W2098693229 @default.
- W2962975612 cites W2100495367 @default.
- W2962975612 cites W2100567442 @default.
- W2962975612 cites W2106754084 @default.
- W2962975612 cites W2113957760 @default.
- W2962975612 cites W2115845039 @default.
- W2962975612 cites W2116402476 @default.
- W2962975612 cites W2117539524 @default.
- W2962975612 cites W2123921160 @default.
- W2962975612 cites W2123977795 @default.
- W2962975612 cites W2124386111 @default.
- W2962975612 cites W2124812588 @default.
- W2962975612 cites W2138621090 @default.
- W2962975612 cites W2150738795 @default.
- W2962975612 cites W2152825437 @default.
- W2962975612 cites W2161969291 @default.
- W2962975612 cites W2164284840 @default.
- W2962975612 cites W2217442075 @default.
- W2962975612 cites W2296073425 @default.
- W2962975612 cites W2513463761 @default.
- W2962975612 cites W2735553491 @default.
- W2962975612 cites W3097096317 @default.
- W2962975612 cites W3099206234 @default.
- W2962975612 cites W4213367101 @default.
- W2962975612 cites W4234345389 @default.
- W2962975612 cites W96676474 @default.
- W2962975612 doi "https://doi.org/10.1109/cvpr.2019.00411" @default.
- W2962975612 hasPublicationYear "2019" @default.
- W2962975612 type Work @default.
- W2962975612 sameAs 2962975612 @default.
- W2962975612 citedByCount "32" @default.
- W2962975612 countsByYear W29629756122018 @default.
- W2962975612 countsByYear W29629756122019 @default.
- W2962975612 countsByYear W29629756122020 @default.
- W2962975612 countsByYear W29629756122021 @default.
- W2962975612 countsByYear W29629756122022 @default.
- W2962975612 countsByYear W29629756122023 @default.
- W2962975612 crossrefType "proceedings-article" @default.
- W2962975612 hasAuthorship W2962975612A5007029060 @default.
- W2962975612 hasAuthorship W2962975612A5031717929 @default.
- W2962975612 hasAuthorship W2962975612A5032803479 @default.
- W2962975612 hasBestOaLocation W29629756122 @default.
- W2962975612 hasConcept C111030470 @default.
- W2962975612 hasConcept C115961682 @default.
- W2962975612 hasConcept C13280743 @default.
- W2962975612 hasConcept C153180895 @default.
- W2962975612 hasConcept C154945302 @default.
- W2962975612 hasConcept C17744445 @default.
- W2962975612 hasConcept C185798385 @default.
- W2962975612 hasConcept C199539241 @default.
- W2962975612 hasConcept C205649164 @default.
- W2962975612 hasConcept C2776359362 @default.
- W2962975612 hasConcept C30732413 @default.
- W2962975612 hasConcept C33923547 @default.
- W2962975612 hasConcept C41008148 @default.
- W2962975612 hasConcept C50644808 @default.
- W2962975612 hasConcept C94625758 @default.
- W2962975612 hasConcept C97931131 @default.
- W2962975612 hasConceptScore W2962975612C111030470 @default.
- W2962975612 hasConceptScore W2962975612C115961682 @default.
- W2962975612 hasConceptScore W2962975612C13280743 @default.
- W2962975612 hasConceptScore W2962975612C153180895 @default.
- W2962975612 hasConceptScore W2962975612C154945302 @default.
- W2962975612 hasConceptScore W2962975612C17744445 @default.
- W2962975612 hasConceptScore W2962975612C185798385 @default.
- W2962975612 hasConceptScore W2962975612C199539241 @default.
- W2962975612 hasConceptScore W2962975612C205649164 @default.
- W2962975612 hasConceptScore W2962975612C2776359362 @default.
- W2962975612 hasConceptScore W2962975612C30732413 @default.
- W2962975612 hasConceptScore W2962975612C33923547 @default.
- W2962975612 hasConceptScore W2962975612C41008148 @default.
- W2962975612 hasConceptScore W2962975612C50644808 @default.
- W2962975612 hasConceptScore W2962975612C94625758 @default.
- W2962975612 hasConceptScore W2962975612C97931131 @default.
- W2962975612 hasLocation W29629756121 @default.
- W2962975612 hasLocation W29629756122 @default.
- W2962975612 hasOpenAccess W2962975612 @default.
- W2962975612 hasPrimaryLocation W29629756121 @default.
- W2962975612 hasRelatedWork W1972656095 @default.
- W2962975612 hasRelatedWork W2024160000 @default.
- W2962975612 hasRelatedWork W2061273563 @default.
- W2962975612 hasRelatedWork W2285052147 @default.
- W2962975612 hasRelatedWork W2729514902 @default.