Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963035648> ?p ?o ?g. }
- W2963035648 startingPage "184" @default.
- W2963035648 abstract "The c-Balanced Separator problem is a graph-partitioning problem in which given a graph G, one aims to find a cut of minimum size such that both the sides of the cut have at least cn vertices. In this paper, we present new directions of progress in the c-Balanced Separator problem. More specifically, we propose a family of mathematical programs, that depend upon a parameter p > 0, and is an extension of the uniform version of the SDPs proposed by Goemans and Linial for this problem. In fact for the case, when p = 1, if one can solve this program in polynomial time then simply using the Goemans-Williamson’s randomized rounding algorithm for Max Cut [11] will give an O(1)-factor approximation algorithm for c-Balanced Separator improving the best known approximation factor of O( √ logn) due to Arora, Rao and Vazirani [4]. This family of programs is not convex but one can transform them into so called concave programs in which one optimizes a concave function over a convex feasible set. It is well known that the optima of such programs lie at one of the extreme points of the feasible set [26]. Our main contribution is a combinatorial characterization of some extreme points of the feasible set of the mathematical program, for p = 1 case, which to the best of our knowledge is the first of its kind. We further demonstrate how this characterization can be used to solve the program in a restricted setting. Non-convex programs have recently been investigated by Bhaskara and Vijayaraghvan [6] in which they design algorithms for approximating Matrix pnorms although their algorithmic techniques are analytical in nature. It is important to note that the properties of concave programs allows one to apply techniques due to Hoffman [18] or Tuy et al [26] to solve such problems with arbitrary accuracy that, for special forms of concave programs, converge in polynomial time. A significant portion of this work was done when the author was a B-Tech, M-Tech dual degree student at IIT-Kanpur, India ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Report No. 184 (2010)" @default.
- W2963035648 created "2019-07-30" @default.
- W2963035648 creator A5039205000 @default.
- W2963035648 date "2010-11-01" @default.
- W2963035648 modified "2023-09-26" @default.
- W2963035648 title "Combinatorial Geometry of Graph Partitioning - I" @default.
- W2963035648 cites W100944330 @default.
- W2963035648 cites W1553598118 @default.
- W2963035648 cites W1571037334 @default.
- W2963035648 cites W1985123706 @default.
- W2963035648 cites W1993063556 @default.
- W2963035648 cites W2002603218 @default.
- W2963035648 cites W2023144280 @default.
- W2963035648 cites W2027048490 @default.
- W2963035648 cites W2036322374 @default.
- W2963035648 cites W2040847787 @default.
- W2963035648 cites W2120358419 @default.
- W2963035648 cites W2140566134 @default.
- W2963035648 cites W2150148016 @default.
- W2963035648 cites W2154876245 @default.
- W2963035648 cites W2155618818 @default.
- W2963035648 cites W2167816765 @default.
- W2963035648 cites W2176446742 @default.
- W2963035648 cites W2611804663 @default.
- W2963035648 cites W3098011928 @default.
- W2963035648 cites W2129192677 @default.
- W2963035648 hasPublicationYear "2010" @default.
- W2963035648 type Work @default.
- W2963035648 sameAs 2963035648 @default.
- W2963035648 citedByCount "0" @default.
- W2963035648 crossrefType "journal-article" @default.
- W2963035648 hasAuthorship W2963035648A5039205000 @default.
- W2963035648 hasConcept C111919701 @default.
- W2963035648 hasConcept C112680207 @default.
- W2963035648 hasConcept C114614502 @default.
- W2963035648 hasConcept C118615104 @default.
- W2963035648 hasConcept C121332964 @default.
- W2963035648 hasConcept C126255220 @default.
- W2963035648 hasConcept C132525143 @default.
- W2963035648 hasConcept C136625980 @default.
- W2963035648 hasConcept C148764684 @default.
- W2963035648 hasConcept C165526019 @default.
- W2963035648 hasConcept C185004128 @default.
- W2963035648 hasConcept C2524010 @default.
- W2963035648 hasConcept C311688 @default.
- W2963035648 hasConcept C32029473 @default.
- W2963035648 hasConcept C33923547 @default.
- W2963035648 hasConcept C39847760 @default.
- W2963035648 hasConcept C41008148 @default.
- W2963035648 hasConcept C48903430 @default.
- W2963035648 hasConcept C52692508 @default.
- W2963035648 hasConcept C97355855 @default.
- W2963035648 hasConceptScore W2963035648C111919701 @default.
- W2963035648 hasConceptScore W2963035648C112680207 @default.
- W2963035648 hasConceptScore W2963035648C114614502 @default.
- W2963035648 hasConceptScore W2963035648C118615104 @default.
- W2963035648 hasConceptScore W2963035648C121332964 @default.
- W2963035648 hasConceptScore W2963035648C126255220 @default.
- W2963035648 hasConceptScore W2963035648C132525143 @default.
- W2963035648 hasConceptScore W2963035648C136625980 @default.
- W2963035648 hasConceptScore W2963035648C148764684 @default.
- W2963035648 hasConceptScore W2963035648C165526019 @default.
- W2963035648 hasConceptScore W2963035648C185004128 @default.
- W2963035648 hasConceptScore W2963035648C2524010 @default.
- W2963035648 hasConceptScore W2963035648C311688 @default.
- W2963035648 hasConceptScore W2963035648C32029473 @default.
- W2963035648 hasConceptScore W2963035648C33923547 @default.
- W2963035648 hasConceptScore W2963035648C39847760 @default.
- W2963035648 hasConceptScore W2963035648C41008148 @default.
- W2963035648 hasConceptScore W2963035648C48903430 @default.
- W2963035648 hasConceptScore W2963035648C52692508 @default.
- W2963035648 hasConceptScore W2963035648C97355855 @default.
- W2963035648 hasLocation W29630356481 @default.
- W2963035648 hasOpenAccess W2963035648 @default.
- W2963035648 hasPrimaryLocation W29630356481 @default.
- W2963035648 hasRelatedWork W10594787 @default.
- W2963035648 hasRelatedWork W1481999670 @default.
- W2963035648 hasRelatedWork W1865859639 @default.
- W2963035648 hasRelatedWork W1870858037 @default.
- W2963035648 hasRelatedWork W1933938761 @default.
- W2963035648 hasRelatedWork W1973129994 @default.
- W2963035648 hasRelatedWork W1973935176 @default.
- W2963035648 hasRelatedWork W1974001037 @default.
- W2963035648 hasRelatedWork W2140154991 @default.
- W2963035648 hasRelatedWork W2184772706 @default.
- W2963035648 hasRelatedWork W2569680952 @default.
- W2963035648 hasRelatedWork W2636789317 @default.
- W2963035648 hasRelatedWork W2767162673 @default.
- W2963035648 hasRelatedWork W2963428363 @default.
- W2963035648 hasRelatedWork W2968262044 @default.
- W2963035648 hasRelatedWork W2970401994 @default.
- W2963035648 hasRelatedWork W3012182554 @default.
- W2963035648 hasRelatedWork W3082111916 @default.
- W2963035648 hasRelatedWork W3125939624 @default.
- W2963035648 hasRelatedWork W570339359 @default.
- W2963035648 hasVolume "17" @default.
- W2963035648 isParatext "false" @default.
- W2963035648 isRetracted "false" @default.
- W2963035648 magId "2963035648" @default.