Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963050660> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2963050660 endingPage "200" @default.
- W2963050660 startingPage "182" @default.
- W2963050660 abstract "The concept of missing data is important to apply statistical methods on the dataset. Statisticians and researchers may end up to an inaccurate illation about the data if the missing data are not handled properly. Of late, Python and R provide diverse packages for handling missing data. In this study, an imputation algorithm, cumulative linear regression, is proposed. The proposed algorithm depends on the linear regression technique. It differs from the existing methods, in that it cumulates the imputed variables; those variables will be incorporated in the linear regression equation to filling in the missing values in the next incomplete variable. The author performed a comparative study of the proposed method and those packages. The performance was measured in terms of imputation time, root-mean-square error, mean absolute error, and coefficient of determination . On analysing on five datasets with different missing values generated from different mechanisms, it was observed that the performances vary depending on the size, missing percentage, and the missingness mechanism. The results showed that the performance of the proposed method is slightly better." @default.
- W2963050660 created "2019-07-30" @default.
- W2963050660 creator A5063114495 @default.
- W2963050660 date "2019-08-30" @default.
- W2963050660 modified "2023-10-04" @default.
- W2963050660 title "Imputing missing values using cumulative linear regression" @default.
- W2963050660 cites W1571313647 @default.
- W2963050660 cites W1841820628 @default.
- W2963050660 cites W1977098485 @default.
- W2963050660 cites W1981457167 @default.
- W2963050660 cites W1983479840 @default.
- W2963050660 cites W1991635626 @default.
- W2963050660 cites W1992329416 @default.
- W2963050660 cites W2030582242 @default.
- W2963050660 cites W2102720558 @default.
- W2963050660 cites W2161375627 @default.
- W2963050660 cites W2162772535 @default.
- W2963050660 cites W2164424382 @default.
- W2963050660 cites W2167546040 @default.
- W2963050660 cites W2170674956 @default.
- W2963050660 cites W2598379669 @default.
- W2963050660 cites W2804428911 @default.
- W2963050660 doi "https://doi.org/10.1049/trit.2019.0032" @default.
- W2963050660 hasPublicationYear "2019" @default.
- W2963050660 type Work @default.
- W2963050660 sameAs 2963050660 @default.
- W2963050660 citedByCount "28" @default.
- W2963050660 countsByYear W29630506602019 @default.
- W2963050660 countsByYear W29630506602020 @default.
- W2963050660 countsByYear W29630506602021 @default.
- W2963050660 countsByYear W29630506602022 @default.
- W2963050660 countsByYear W29630506602023 @default.
- W2963050660 crossrefType "journal-article" @default.
- W2963050660 hasAuthorship W2963050660A5063114495 @default.
- W2963050660 hasBestOaLocation W29630506601 @default.
- W2963050660 hasConcept C105795698 @default.
- W2963050660 hasConcept C111919701 @default.
- W2963050660 hasConcept C124101348 @default.
- W2963050660 hasConcept C139945424 @default.
- W2963050660 hasConcept C152877465 @default.
- W2963050660 hasConcept C33923547 @default.
- W2963050660 hasConcept C41008148 @default.
- W2963050660 hasConcept C48921125 @default.
- W2963050660 hasConcept C519991488 @default.
- W2963050660 hasConcept C58041806 @default.
- W2963050660 hasConcept C83546350 @default.
- W2963050660 hasConcept C9357733 @default.
- W2963050660 hasConceptScore W2963050660C105795698 @default.
- W2963050660 hasConceptScore W2963050660C111919701 @default.
- W2963050660 hasConceptScore W2963050660C124101348 @default.
- W2963050660 hasConceptScore W2963050660C139945424 @default.
- W2963050660 hasConceptScore W2963050660C152877465 @default.
- W2963050660 hasConceptScore W2963050660C33923547 @default.
- W2963050660 hasConceptScore W2963050660C41008148 @default.
- W2963050660 hasConceptScore W2963050660C48921125 @default.
- W2963050660 hasConceptScore W2963050660C519991488 @default.
- W2963050660 hasConceptScore W2963050660C58041806 @default.
- W2963050660 hasConceptScore W2963050660C83546350 @default.
- W2963050660 hasConceptScore W2963050660C9357733 @default.
- W2963050660 hasIssue "3" @default.
- W2963050660 hasLocation W29630506601 @default.
- W2963050660 hasOpenAccess W2963050660 @default.
- W2963050660 hasPrimaryLocation W29630506601 @default.
- W2963050660 hasRelatedWork W2031127365 @default.
- W2963050660 hasRelatedWork W2073980917 @default.
- W2963050660 hasRelatedWork W2105559915 @default.
- W2963050660 hasRelatedWork W2789931592 @default.
- W2963050660 hasRelatedWork W2911362133 @default.
- W2963050660 hasRelatedWork W2967771611 @default.
- W2963050660 hasRelatedWork W3131714113 @default.
- W2963050660 hasRelatedWork W314306847 @default.
- W2963050660 hasRelatedWork W4207003862 @default.
- W2963050660 hasRelatedWork W2165189522 @default.
- W2963050660 hasVolume "4" @default.
- W2963050660 isParatext "false" @default.
- W2963050660 isRetracted "false" @default.
- W2963050660 magId "2963050660" @default.
- W2963050660 workType "article" @default.