Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963057024> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2963057024 endingPage "1639" @default.
- W2963057024 startingPage "1630" @default.
- W2963057024 abstract "Deep Neural Networks (DNNs) have recently shown state of the art performance on semantic segmentation tasks, however, they still suffer from problems of poor boundary localization and spatial fragmented predictions. The difficulties lie in the requirement of making dense predictions from a long path model all at once since details are hard to keep when data goes through deeper layers. Instead, in this work, we decompose this difficult task into two relative simple sub-tasks: seed detection which is required to predict initial predictions without the need of wholeness and preciseness, and similarity estimation which measures the possibility of any two nodes belong to the same class without the need of knowing which class they are. We use one branch network for one sub-task each, and apply a cascade of random walks base on hierarchical semantics to approximate a complex diffusion process which propagates seed information to the whole image according to the estimated similarities. The proposed DifNet consistently produces improvements over the baseline models with the same depth and with the equivalent number of parameters, and also achieves promising performance on Pascal VOC and Pascal Context dataset. OurDifNet is trained end-to-end without complex loss functions." @default.
- W2963057024 created "2019-07-30" @default.
- W2963057024 creator A5010714340 @default.
- W2963057024 creator A5068526974 @default.
- W2963057024 creator A5078206255 @default.
- W2963057024 creator A5087472282 @default.
- W2963057024 creator A5091117089 @default.
- W2963057024 date "2018-05-01" @default.
- W2963057024 modified "2023-10-18" @default.
- W2963057024 title "DifNet: Semantic Segmentation by Diffusion Networks" @default.
- W2963057024 hasPublicationYear "2018" @default.
- W2963057024 type Work @default.
- W2963057024 sameAs 2963057024 @default.
- W2963057024 citedByCount "4" @default.
- W2963057024 countsByYear W29630570242019 @default.
- W2963057024 countsByYear W29630570242020 @default.
- W2963057024 countsByYear W29630570242021 @default.
- W2963057024 crossrefType "proceedings-article" @default.
- W2963057024 hasAuthorship W2963057024A5010714340 @default.
- W2963057024 hasAuthorship W2963057024A5068526974 @default.
- W2963057024 hasAuthorship W2963057024A5078206255 @default.
- W2963057024 hasAuthorship W2963057024A5087472282 @default.
- W2963057024 hasAuthorship W2963057024A5091117089 @default.
- W2963057024 hasConcept C11413529 @default.
- W2963057024 hasConcept C124101348 @default.
- W2963057024 hasConcept C151730666 @default.
- W2963057024 hasConcept C153180895 @default.
- W2963057024 hasConcept C154945302 @default.
- W2963057024 hasConcept C184337299 @default.
- W2963057024 hasConcept C199360897 @default.
- W2963057024 hasConcept C2779343474 @default.
- W2963057024 hasConcept C41008148 @default.
- W2963057024 hasConcept C75608658 @default.
- W2963057024 hasConcept C80444323 @default.
- W2963057024 hasConcept C86803240 @default.
- W2963057024 hasConcept C89600930 @default.
- W2963057024 hasConceptScore W2963057024C11413529 @default.
- W2963057024 hasConceptScore W2963057024C124101348 @default.
- W2963057024 hasConceptScore W2963057024C151730666 @default.
- W2963057024 hasConceptScore W2963057024C153180895 @default.
- W2963057024 hasConceptScore W2963057024C154945302 @default.
- W2963057024 hasConceptScore W2963057024C184337299 @default.
- W2963057024 hasConceptScore W2963057024C199360897 @default.
- W2963057024 hasConceptScore W2963057024C2779343474 @default.
- W2963057024 hasConceptScore W2963057024C41008148 @default.
- W2963057024 hasConceptScore W2963057024C75608658 @default.
- W2963057024 hasConceptScore W2963057024C80444323 @default.
- W2963057024 hasConceptScore W2963057024C86803240 @default.
- W2963057024 hasConceptScore W2963057024C89600930 @default.
- W2963057024 hasLocation W29630570241 @default.
- W2963057024 hasOpenAccess W2963057024 @default.
- W2963057024 hasPrimaryLocation W29630570241 @default.
- W2963057024 hasRelatedWork W1885185971 @default.
- W2963057024 hasRelatedWork W1901129140 @default.
- W2963057024 hasRelatedWork W2194775991 @default.
- W2963057024 hasRelatedWork W2340017589 @default.
- W2963057024 hasRelatedWork W2550475090 @default.
- W2963057024 hasRelatedWork W2565756288 @default.
- W2963057024 hasRelatedWork W2574952845 @default.
- W2963057024 hasRelatedWork W2592414189 @default.
- W2963057024 hasRelatedWork W2605417544 @default.
- W2963057024 hasRelatedWork W2766928247 @default.
- W2963057024 hasRelatedWork W2776585113 @default.
- W2963057024 hasRelatedWork W2890228252 @default.
- W2963057024 hasRelatedWork W2890946821 @default.
- W2963057024 hasRelatedWork W2901762548 @default.
- W2963057024 hasRelatedWork W2901832315 @default.
- W2963057024 hasRelatedWork W2915004230 @default.
- W2963057024 hasRelatedWork W2919115771 @default.
- W2963057024 hasRelatedWork W2963342403 @default.
- W2963057024 hasRelatedWork W2996952120 @default.
- W2963057024 hasRelatedWork W3196750356 @default.
- W2963057024 hasVolume "31" @default.
- W2963057024 isParatext "false" @default.
- W2963057024 isRetracted "false" @default.
- W2963057024 magId "2963057024" @default.
- W2963057024 workType "article" @default.