Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963064183> ?p ?o ?g. }
- W2963064183 endingPage "6639" @default.
- W2963064183 startingPage "6625" @default.
- W2963064183 abstract "Abstract Recent advances in deep learning for neural networks with large numbers of parameters have been enabled by automatic differentiation, an algorithmic technique for calculating gradients of measures of model fit with respect to model parameters. Estimation of high‐dimensional parameter sets is an important problem within the hydrological sciences. Here, we demonstrate the effectiveness of gradient‐based estimation techniques for high‐dimensional inverse estimation problems using a conceptual rainfall‐runoff model. In particular, we compare the effectiveness of Hamiltonian Monte Carlo and automatic differentiation variational inference against two nongradient‐dependent methods, random walk Metropolis and differential evolution Metropolis. We show that the former two techniques exhibit superior performance for inverse estimation of daily rainfall values and are much more computationally efficient on larger data sets in an experiment with synthetic data. We also present a case study evaluating the effectiveness of automatic differentiation variational inference for inverse estimation over 25 years of daily precipitation conditional on streamflow observations at three catchments and show that it is scalable to very high dimensional parameter spaces. The presented results highlight the power of combining hydrological process‐based models with optimization techniques from deep learning for high‐dimensional estimation problems." @default.
- W2963064183 created "2019-07-30" @default.
- W2963064183 creator A5002202341 @default.
- W2963064183 creator A5027846841 @default.
- W2963064183 creator A5036498410 @default.
- W2963064183 date "2019-08-01" @default.
- W2963064183 modified "2023-10-13" @default.
- W2963064183 title "Gradient‐Based Inverse Estimation for a Rainfall‐Runoff Model" @default.
- W2963064183 cites W1498436455 @default.
- W2963064183 cites W1544278534 @default.
- W2963064183 cites W1545319692 @default.
- W2963064183 cites W1557483757 @default.
- W2963064183 cites W1567512734 @default.
- W2963064183 cites W1581455480 @default.
- W2963064183 cites W1588946961 @default.
- W2963064183 cites W1595159159 @default.
- W2963064183 cites W1670941329 @default.
- W2963064183 cites W1754423787 @default.
- W2963064183 cites W1977081203 @default.
- W2963064183 cites W1981514681 @default.
- W2963064183 cites W1984038448 @default.
- W2963064183 cites W1994616650 @default.
- W2963064183 cites W1995780830 @default.
- W2963064183 cites W1995797217 @default.
- W2963064183 cites W1996210406 @default.
- W2963064183 cites W2008313676 @default.
- W2963064183 cites W2008678369 @default.
- W2963064183 cites W2010624461 @default.
- W2963064183 cites W2012798851 @default.
- W2963064183 cites W2035084234 @default.
- W2963064183 cites W2036056913 @default.
- W2963064183 cites W2047989160 @default.
- W2963064183 cites W2059448777 @default.
- W2963064183 cites W2060160325 @default.
- W2963064183 cites W2063756720 @default.
- W2963064183 cites W2064643369 @default.
- W2963064183 cites W2073867489 @default.
- W2963064183 cites W2110978023 @default.
- W2963064183 cites W2114824684 @default.
- W2963064183 cites W2117681582 @default.
- W2963064183 cites W2127836946 @default.
- W2963064183 cites W2130311833 @default.
- W2963064183 cites W2132071585 @default.
- W2963064183 cites W2136634080 @default.
- W2963064183 cites W2146495904 @default.
- W2963064183 cites W2152175008 @default.
- W2963064183 cites W2154930823 @default.
- W2963064183 cites W2155893237 @default.
- W2963064183 cites W2170396766 @default.
- W2963064183 cites W2173126837 @default.
- W2963064183 cites W2215560032 @default.
- W2963064183 cites W2217402295 @default.
- W2963064183 cites W2315134482 @default.
- W2963064183 cites W2513690381 @default.
- W2963064183 cites W2577537660 @default.
- W2963064183 cites W2739323338 @default.
- W2963064183 cites W2790650361 @default.
- W2963064183 cites W2799995162 @default.
- W2963064183 cites W2802436364 @default.
- W2963064183 cites W2810988794 @default.
- W2963064183 cites W2900550278 @default.
- W2963064183 cites W2954040150 @default.
- W2963064183 cites W3018770027 @default.
- W2963064183 cites W3101380508 @default.
- W2963064183 doi "https://doi.org/10.1029/2018wr024461" @default.
- W2963064183 hasPublicationYear "2019" @default.
- W2963064183 type Work @default.
- W2963064183 sameAs 2963064183 @default.
- W2963064183 citedByCount "8" @default.
- W2963064183 countsByYear W29630641832020 @default.
- W2963064183 countsByYear W29630641832021 @default.
- W2963064183 countsByYear W29630641832022 @default.
- W2963064183 countsByYear W29630641832023 @default.
- W2963064183 crossrefType "journal-article" @default.
- W2963064183 hasAuthorship W2963064183A5002202341 @default.
- W2963064183 hasAuthorship W2963064183A5027846841 @default.
- W2963064183 hasAuthorship W2963064183A5036498410 @default.
- W2963064183 hasBestOaLocation W29630641831 @default.
- W2963064183 hasConcept C11413529 @default.
- W2963064183 hasConcept C126197015 @default.
- W2963064183 hasConcept C126255220 @default.
- W2963064183 hasConcept C127313418 @default.
- W2963064183 hasConcept C133512626 @default.
- W2963064183 hasConcept C134306372 @default.
- W2963064183 hasConcept C135252773 @default.
- W2963064183 hasConcept C154945302 @default.
- W2963064183 hasConcept C167928553 @default.
- W2963064183 hasConcept C207467116 @default.
- W2963064183 hasConcept C2524010 @default.
- W2963064183 hasConcept C2776214188 @default.
- W2963064183 hasConcept C28826006 @default.
- W2963064183 hasConcept C33923547 @default.
- W2963064183 hasConcept C41008148 @default.
- W2963064183 hasConcept C45374587 @default.
- W2963064183 hasConcept C48044578 @default.
- W2963064183 hasConcept C49204034 @default.
- W2963064183 hasConcept C77088390 @default.
- W2963064183 hasConceptScore W2963064183C11413529 @default.