Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963094949> ?p ?o ?g. }
- W2963094949 endingPage "5740" @default.
- W2963094949 startingPage "5699" @default.
- W2963094949 abstract "We consider the problem of matrix column subset selection, which selects a subset of columns from an input matrix such that the input can be well approximated by the span of the selected columns. Column subset selection has been applied to numerous real-world data applications such as population genetics summarization, electronic circuits testing and recommendation systems. In many applications the complete data matrix is unavailable and one needs to select representative columns by inspecting only a small portion of the input matrix. In this paper we propose the first provably correct column subset selection algorithms for partially observed data matrices. Our proposed algorithms exhibit different merits and limitations in terms of statistical accuracy, computational efficiency, sample complexity and sampling schemes, which provides a nice exploration of the tradeoff between these desired properties for column subset selection. The proposed methods employ the idea of feedback driven sampling and are inspired by several sampling schemes previously introduced for low-rank matrix approximation tasks (Drineas et al., 2008; Frieze et al., 2004; Deshpande and Vempala, 2006; Krishnamurthy and Singh, 2014). Our analysis shows that, under the assumption that the input data matrix has incoherent rows but possibly coherent columns, all algorithms provably converge to the best low-rank approximation of the original data as number of selected columns increases. Furthermore, two of the proposed algorithms enjoy a relative error bound, which is preferred for column subset selection and matrix approximation purposes. We also demonstrate through both theoretical and empirical analysis the power of feedback driven sampling compared to uniform random sampling on input matrices with highly correlated columns." @default.
- W2963094949 created "2019-07-30" @default.
- W2963094949 creator A5066109863 @default.
- W2963094949 creator A5077874981 @default.
- W2963094949 date "2017-01-01" @default.
- W2963094949 modified "2023-09-26" @default.
- W2963094949 title "Provably correct algorithms for matrix column subset selection with selectively sampled data" @default.
- W2963094949 cites W1495927536 @default.
- W2963094949 cites W1529624360 @default.
- W2963094949 cites W1560153690 @default.
- W2963094949 cites W1653728640 @default.
- W2963094949 cites W1787402657 @default.
- W2963094949 cites W1886579186 @default.
- W2963094949 cites W1937322722 @default.
- W2963094949 cites W1970576574 @default.
- W2963094949 cites W1970950689 @default.
- W2963094949 cites W1979750072 @default.
- W2963094949 cites W1981657694 @default.
- W2963094949 cites W1998269045 @default.
- W2963094949 cites W2003690406 @default.
- W2963094949 cites W2008205484 @default.
- W2963094949 cites W2042465463 @default.
- W2963094949 cites W2044610104 @default.
- W2963094949 cites W2047071281 @default.
- W2963094949 cites W2097574142 @default.
- W2963094949 cites W2100282471 @default.
- W2963094949 cites W2119233169 @default.
- W2963094949 cites W2120539875 @default.
- W2963094949 cites W2120872934 @default.
- W2963094949 cites W2128858663 @default.
- W2963094949 cites W2131172946 @default.
- W2963094949 cites W2138019504 @default.
- W2963094949 cites W2145799156 @default.
- W2963094949 cites W2154441964 @default.
- W2963094949 cites W2156540265 @default.
- W2963094949 cites W2160941318 @default.
- W2963094949 cites W2168274347 @default.
- W2963094949 cites W2547648546 @default.
- W2963094949 cites W2616345629 @default.
- W2963094949 cites W2949173582 @default.
- W2963094949 cites W2949412345 @default.
- W2963094949 cites W2949527996 @default.
- W2963094949 cites W2951962013 @default.
- W2963094949 cites W2952509110 @default.
- W2963094949 cites W3037079313 @default.
- W2963094949 cites W2144730813 @default.
- W2963094949 hasPublicationYear "2017" @default.
- W2963094949 type Work @default.
- W2963094949 sameAs 2963094949 @default.
- W2963094949 citedByCount "4" @default.
- W2963094949 countsByYear W29630949492019 @default.
- W2963094949 countsByYear W29630949492020 @default.
- W2963094949 countsByYear W29630949492021 @default.
- W2963094949 crossrefType "journal-article" @default.
- W2963094949 hasAuthorship W2963094949A5066109863 @default.
- W2963094949 hasAuthorship W2963094949A5077874981 @default.
- W2963094949 hasConcept C104140500 @default.
- W2963094949 hasConcept C106131492 @default.
- W2963094949 hasConcept C106487976 @default.
- W2963094949 hasConcept C11413529 @default.
- W2963094949 hasConcept C114614502 @default.
- W2963094949 hasConcept C126042441 @default.
- W2963094949 hasConcept C134306372 @default.
- W2963094949 hasConcept C135598885 @default.
- W2963094949 hasConcept C140779682 @default.
- W2963094949 hasConcept C154945302 @default.
- W2963094949 hasConcept C159985019 @default.
- W2963094949 hasConcept C164226766 @default.
- W2963094949 hasConcept C170858558 @default.
- W2963094949 hasConcept C192562407 @default.
- W2963094949 hasConcept C25023664 @default.
- W2963094949 hasConcept C2780551164 @default.
- W2963094949 hasConcept C31972630 @default.
- W2963094949 hasConcept C33923547 @default.
- W2963094949 hasConcept C41008148 @default.
- W2963094949 hasConcept C76155785 @default.
- W2963094949 hasConcept C77088390 @default.
- W2963094949 hasConcept C81917197 @default.
- W2963094949 hasConcept C90199385 @default.
- W2963094949 hasConceptScore W2963094949C104140500 @default.
- W2963094949 hasConceptScore W2963094949C106131492 @default.
- W2963094949 hasConceptScore W2963094949C106487976 @default.
- W2963094949 hasConceptScore W2963094949C11413529 @default.
- W2963094949 hasConceptScore W2963094949C114614502 @default.
- W2963094949 hasConceptScore W2963094949C126042441 @default.
- W2963094949 hasConceptScore W2963094949C134306372 @default.
- W2963094949 hasConceptScore W2963094949C135598885 @default.
- W2963094949 hasConceptScore W2963094949C140779682 @default.
- W2963094949 hasConceptScore W2963094949C154945302 @default.
- W2963094949 hasConceptScore W2963094949C159985019 @default.
- W2963094949 hasConceptScore W2963094949C164226766 @default.
- W2963094949 hasConceptScore W2963094949C170858558 @default.
- W2963094949 hasConceptScore W2963094949C192562407 @default.
- W2963094949 hasConceptScore W2963094949C25023664 @default.
- W2963094949 hasConceptScore W2963094949C2780551164 @default.
- W2963094949 hasConceptScore W2963094949C31972630 @default.
- W2963094949 hasConceptScore W2963094949C33923547 @default.
- W2963094949 hasConceptScore W2963094949C41008148 @default.