Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963110578> ?p ?o ?g. }
- W2963110578 endingPage "134" @default.
- W2963110578 startingPage "95" @default.
- W2963110578 abstract "Many fluctuation-driven phenomena in fluids can be analysed effectively using the generalised Lagrangian-mean (GLM) theory of Andrews & McIntyre ( J. Fluid Mech. , vol. 89, 1978, pp. 609–646) This finite-amplitude theory relies on particle-following averaging to incorporate the constraints imposed by the material conservation of certain quantities in inviscid regimes. Its original formulation, in terms of Cartesian coordinates, relies implicitly on an assumed Euclidean structure; as a result, it does not have a geometrically intrinsic, coordinate-free interpretation on curved manifolds, and suffers from undesirable features. Motivated by this, we develop a geometric generalisation of GLM that we formulate intrinsically using coordinate-free notation. One benefit is that the theory applies to arbitrary Riemannian manifolds; another is that it establishes a clear distinction between results that stem directly from geometric consistency and those that depend on particular choices. Starting from a decomposition of an ensemble of flow maps into mean and perturbation, we define the Lagrangian-mean momentum as the average of the pull-back of the momentum one-form by the perturbation flow maps. We show that it obeys a simple equation which guarantees the conservation of Kelvin’s circulation, irrespective of the specific definition of the mean flow map. The Lagrangian-mean momentum is the integrand in Kelvin’s circulation and distinct from the mean velocity (the time derivative of the mean flow map) which advects the contour of integration. A pseudomomentum consistent with that in GLM can then be defined by subtracting the Lagrangian-mean momentum from the one-form obtained from the mean velocity using the manifold’s metric. The definition of the mean flow map is based on choices made for reasons of convenience or aesthetics. We discuss four possible definitions: a direct extension of standard GLM, a definition based on optimal transportation, a definition based on a geodesic distance in the group of volume-preserving diffeomorphisms, and the ‘glm’ definition proposed by Soward & Roberts ( J. Fluid Mech. , vol. 661, 2010, pp. 45–72). Assuming small-amplitude perturbations, we carry out order-by-order calculations to obtain explicit expressions for the mean velocity and Lagrangian-mean momentum at leading order. We also show how the wave-action conservation of GLM extends to the geometric setting. To make the paper self-contained, we introduce in some detail the tools of differential geometry and main ideas of geometric fluid dynamics on which we rely. These include variational formulations which we use for alternative derivations of some key results. We mostly focus on the Euler equations for incompressible inviscid fluids but sketch out extensions to the rotating–stratified Boussinesq, compressible Euler, and magnetohydrodynamic equations. We illustrate our results with an application to the interaction of inertia-gravity waves with balanced mean flows in rotating–stratified fluids." @default.
- W2963110578 created "2019-07-30" @default.
- W2963110578 creator A5011968770 @default.
- W2963110578 creator A5073589703 @default.
- W2963110578 date "2018-01-25" @default.
- W2963110578 modified "2023-10-16" @default.
- W2963110578 title "Geometric generalised Lagrangian-mean theories" @default.
- W2963110578 cites W118222553 @default.
- W2963110578 cites W1535686027 @default.
- W2963110578 cites W1967329175 @default.
- W2963110578 cites W1968695235 @default.
- W2963110578 cites W1969002377 @default.
- W2963110578 cites W1970739408 @default.
- W2963110578 cites W1984533458 @default.
- W2963110578 cites W1984955995 @default.
- W2963110578 cites W1990218024 @default.
- W2963110578 cites W1994088960 @default.
- W2963110578 cites W2003390939 @default.
- W2963110578 cites W2004883656 @default.
- W2963110578 cites W2009360381 @default.
- W2963110578 cites W2010483624 @default.
- W2963110578 cites W2024935598 @default.
- W2963110578 cites W2029342893 @default.
- W2963110578 cites W2029403139 @default.
- W2963110578 cites W2036260039 @default.
- W2963110578 cites W2058057591 @default.
- W2963110578 cites W2061727701 @default.
- W2963110578 cites W2077550432 @default.
- W2963110578 cites W2087713017 @default.
- W2963110578 cites W2093111567 @default.
- W2963110578 cites W2093276581 @default.
- W2963110578 cites W2101688882 @default.
- W2963110578 cites W2133521220 @default.
- W2963110578 cites W2143008491 @default.
- W2963110578 cites W2150139821 @default.
- W2963110578 cites W2162550557 @default.
- W2963110578 cites W2163478090 @default.
- W2963110578 cites W2167119775 @default.
- W2963110578 cites W2206791272 @default.
- W2963110578 cites W2316455966 @default.
- W2963110578 cites W23439455 @default.
- W2963110578 cites W2552152768 @default.
- W2963110578 cites W2576540653 @default.
- W2963110578 cites W2963388637 @default.
- W2963110578 cites W2984925782 @default.
- W2963110578 cites W3041070869 @default.
- W2963110578 cites W3107051266 @default.
- W2963110578 cites W4206456012 @default.
- W2963110578 cites W4239118234 @default.
- W2963110578 doi "https://doi.org/10.1017/jfm.2017.913" @default.
- W2963110578 hasPublicationYear "2018" @default.
- W2963110578 type Work @default.
- W2963110578 sameAs 2963110578 @default.
- W2963110578 citedByCount "23" @default.
- W2963110578 countsByYear W29631105782018 @default.
- W2963110578 countsByYear W29631105782019 @default.
- W2963110578 countsByYear W29631105782020 @default.
- W2963110578 countsByYear W29631105782021 @default.
- W2963110578 countsByYear W29631105782022 @default.
- W2963110578 countsByYear W29631105782023 @default.
- W2963110578 crossrefType "journal-article" @default.
- W2963110578 hasAuthorship W2963110578A5011968770 @default.
- W2963110578 hasAuthorship W2963110578A5073589703 @default.
- W2963110578 hasBestOaLocation W29631105782 @default.
- W2963110578 hasConcept C10138342 @default.
- W2963110578 hasConcept C111915175 @default.
- W2963110578 hasConcept C121332964 @default.
- W2963110578 hasConcept C127813850 @default.
- W2963110578 hasConcept C134306372 @default.
- W2963110578 hasConcept C162324750 @default.
- W2963110578 hasConcept C175017881 @default.
- W2963110578 hasConcept C195065555 @default.
- W2963110578 hasConcept C196558001 @default.
- W2963110578 hasConcept C205904022 @default.
- W2963110578 hasConcept C2524010 @default.
- W2963110578 hasConcept C33923547 @default.
- W2963110578 hasConcept C38349280 @default.
- W2963110578 hasConcept C57879066 @default.
- W2963110578 hasConcept C60718061 @default.
- W2963110578 hasConcept C74650414 @default.
- W2963110578 hasConcept C86252789 @default.
- W2963110578 hasConceptScore W2963110578C10138342 @default.
- W2963110578 hasConceptScore W2963110578C111915175 @default.
- W2963110578 hasConceptScore W2963110578C121332964 @default.
- W2963110578 hasConceptScore W2963110578C127813850 @default.
- W2963110578 hasConceptScore W2963110578C134306372 @default.
- W2963110578 hasConceptScore W2963110578C162324750 @default.
- W2963110578 hasConceptScore W2963110578C175017881 @default.
- W2963110578 hasConceptScore W2963110578C195065555 @default.
- W2963110578 hasConceptScore W2963110578C196558001 @default.
- W2963110578 hasConceptScore W2963110578C205904022 @default.
- W2963110578 hasConceptScore W2963110578C2524010 @default.
- W2963110578 hasConceptScore W2963110578C33923547 @default.
- W2963110578 hasConceptScore W2963110578C38349280 @default.
- W2963110578 hasConceptScore W2963110578C57879066 @default.
- W2963110578 hasConceptScore W2963110578C60718061 @default.
- W2963110578 hasConceptScore W2963110578C74650414 @default.
- W2963110578 hasConceptScore W2963110578C86252789 @default.