Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963129413> ?p ?o ?g. }
- W2963129413 endingPage "6181" @default.
- W2963129413 startingPage "6169" @default.
- W2963129413 abstract "In the field of spatial–spectral fusion, the variational model-based methods and the deep learning (DL)-based methods are state-of-the-art approaches. This paper presents a fusion method that combines the deep neural network with a variational model for the most common case of spatial–spectral fusion: panchromatic (PAN)/multispectral (MS) fusion. Specifically, a deep residual convolutional neural network (CNN) is first trained to learn the gradient features of the high spatial resolution multispectral image (HR-MS). The image observation variational models are then formulated to describe the relationships of the ideal fused image, the observed low spatial resolution multispectral image (LR-MS) image, and the gradient priors learned before. Then, fusion result can then be obtained by solving the fusion variational model. Both quantitative and visual assessments on high-quality images from various sources demonstrate that the proposed fusion method is superior to all the mainstream algorithms included in the comparison, in terms of overall fusion accuracy." @default.
- W2963129413 created "2019-07-30" @default.
- W2963129413 creator A5036283525 @default.
- W2963129413 creator A5047138645 @default.
- W2963129413 creator A5047576305 @default.
- W2963129413 creator A5063043017 @default.
- W2963129413 creator A5064776886 @default.
- W2963129413 creator A5085035578 @default.
- W2963129413 date "2019-08-01" @default.
- W2963129413 modified "2023-10-09" @default.
- W2963129413 title "Spatial–Spectral Fusion by Combining Deep Learning and Variational Model" @default.
- W2963129413 cites W1943127271 @default.
- W2963129413 cites W1969210895 @default.
- W2963129413 cites W2002345587 @default.
- W2963129413 cites W2004913087 @default.
- W2963129413 cites W2009820353 @default.
- W2963129413 cites W2011830145 @default.
- W2963129413 cites W2014316959 @default.
- W2963129413 cites W2032275874 @default.
- W2963129413 cites W2036825992 @default.
- W2963129413 cites W2039247168 @default.
- W2963129413 cites W2047757202 @default.
- W2963129413 cites W2054440797 @default.
- W2963129413 cites W2064366277 @default.
- W2963129413 cites W2124743705 @default.
- W2963129413 cites W2124952510 @default.
- W2963129413 cites W2149720806 @default.
- W2963129413 cites W2164306391 @default.
- W2963129413 cites W2171108951 @default.
- W2963129413 cites W2171211028 @default.
- W2963129413 cites W2171627515 @default.
- W2963129413 cites W2194775991 @default.
- W2963129413 cites W2295976914 @default.
- W2963129413 cites W2326587421 @default.
- W2963129413 cites W2414009677 @default.
- W2963129413 cites W2462592242 @default.
- W2963129413 cites W2468704697 @default.
- W2963129413 cites W2494274259 @default.
- W2963129413 cites W2514340250 @default.
- W2963129413 cites W2524927183 @default.
- W2963129413 cites W2584156879 @default.
- W2963129413 cites W2600626704 @default.
- W2963129413 cites W2613155248 @default.
- W2963129413 cites W2619662254 @default.
- W2963129413 cites W2755186337 @default.
- W2963129413 cites W2761333220 @default.
- W2963129413 cites W2775207294 @default.
- W2963129413 cites W2803825432 @default.
- W2963129413 cites W2806155925 @default.
- W2963129413 cites W2806865914 @default.
- W2963129413 cites W2963183385 @default.
- W2963129413 cites W2963442801 @default.
- W2963129413 cites W2963583038 @default.
- W2963129413 cites W3103964896 @default.
- W2963129413 cites W3105234146 @default.
- W2963129413 cites W3122817556 @default.
- W2963129413 doi "https://doi.org/10.1109/tgrs.2019.2904659" @default.
- W2963129413 hasPublicationYear "2019" @default.
- W2963129413 type Work @default.
- W2963129413 sameAs 2963129413 @default.
- W2963129413 citedByCount "55" @default.
- W2963129413 countsByYear W29631294132020 @default.
- W2963129413 countsByYear W29631294132021 @default.
- W2963129413 countsByYear W29631294132022 @default.
- W2963129413 countsByYear W29631294132023 @default.
- W2963129413 crossrefType "journal-article" @default.
- W2963129413 hasAuthorship W2963129413A5036283525 @default.
- W2963129413 hasAuthorship W2963129413A5047138645 @default.
- W2963129413 hasAuthorship W2963129413A5047576305 @default.
- W2963129413 hasAuthorship W2963129413A5063043017 @default.
- W2963129413 hasAuthorship W2963129413A5064776886 @default.
- W2963129413 hasAuthorship W2963129413A5085035578 @default.
- W2963129413 hasBestOaLocation W29631294132 @default.
- W2963129413 hasConcept C107445234 @default.
- W2963129413 hasConcept C108583219 @default.
- W2963129413 hasConcept C115961682 @default.
- W2963129413 hasConcept C138885662 @default.
- W2963129413 hasConcept C153180895 @default.
- W2963129413 hasConcept C154945302 @default.
- W2963129413 hasConcept C158525013 @default.
- W2963129413 hasConcept C173163844 @default.
- W2963129413 hasConcept C205372480 @default.
- W2963129413 hasConcept C31972630 @default.
- W2963129413 hasConcept C41008148 @default.
- W2963129413 hasConcept C41895202 @default.
- W2963129413 hasConcept C50644808 @default.
- W2963129413 hasConcept C69744172 @default.
- W2963129413 hasConcept C81363708 @default.
- W2963129413 hasConceptScore W2963129413C107445234 @default.
- W2963129413 hasConceptScore W2963129413C108583219 @default.
- W2963129413 hasConceptScore W2963129413C115961682 @default.
- W2963129413 hasConceptScore W2963129413C138885662 @default.
- W2963129413 hasConceptScore W2963129413C153180895 @default.
- W2963129413 hasConceptScore W2963129413C154945302 @default.
- W2963129413 hasConceptScore W2963129413C158525013 @default.
- W2963129413 hasConceptScore W2963129413C173163844 @default.
- W2963129413 hasConceptScore W2963129413C205372480 @default.
- W2963129413 hasConceptScore W2963129413C31972630 @default.