Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963131402> ?p ?o ?g. }
- W2963131402 abstract "This paper introduces a deep neural network based method, i.e., DeepOrganNet, to generate and visualize high-fidelity 3D / 4D organ geometric models from single-view medical image in real time. Traditional 3D / 4D medical image reconstruction requires near hundreds of projections, which cost insufferable computational time and deliver undesirable high imaging / radiation dose to human subjects. Moreover, it always needs further notorious processes to extract the accurate 3D organ models subsequently. To our knowledge, there is no method directly and explicitly reconstructing multiple 3D organ meshes from a single 2D medical grayscale image on the fly. Given single-view 2D medical images, e.g., 3D / 4D-CT projections or X-ray images, our end-to-end DeepOrganNet framework can efficiently and effectively reconstruct 3D / 4D lung models with a variety of geometric shapes by learning the smooth deformation fields from multiple templates based on a trivariate tensor-product deformation technique, leveraging an informative latent descriptor extracted from input 2D images. The proposed method can guarantee to generate high-quality and high-fidelity manifold meshes for 3D / 4D lung models. The major contributions of this work are to accurately reconstruct the 3D organ shapes from 2D single-view projection, significantly improve the procedure time to allow on-the-fly visualization, and dramatically reduce the imaging dose for human subjects. Experimental results are evaluated and compared with the traditional reconstruction method and the state-of-the-art in deep learning, by using extensive 3D and 4D examples from synthetic phantom and real patient datasets. The proposed method only needs several milliseconds to generate organ meshes with 10K vertices, which has a great potential to be used in real-time image guided radiation therapy (IGRT)." @default.
- W2963131402 created "2019-07-30" @default.
- W2963131402 creator A5050419964 @default.
- W2963131402 creator A5082598478 @default.
- W2963131402 creator A5091044747 @default.
- W2963131402 date "2019-07-22" @default.
- W2963131402 modified "2023-09-26" @default.
- W2963131402 title "DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network" @default.
- W2963131402 cites W1532217093 @default.
- W2963131402 cites W1533769128 @default.
- W2963131402 cites W1546217776 @default.
- W2963131402 cites W1601600012 @default.
- W2963131402 cites W1798731418 @default.
- W2963131402 cites W1893912098 @default.
- W2963131402 cites W1920022804 @default.
- W2963131402 cites W1986612530 @default.
- W2963131402 cites W2003170314 @default.
- W2963131402 cites W2006502673 @default.
- W2963131402 cites W2017797123 @default.
- W2963131402 cites W2021261909 @default.
- W2963131402 cites W2029266086 @default.
- W2963131402 cites W2041802765 @default.
- W2963131402 cites W2042036475 @default.
- W2963131402 cites W2045059592 @default.
- W2963131402 cites W2053790843 @default.
- W2963131402 cites W2065319605 @default.
- W2963131402 cites W2096619076 @default.
- W2963131402 cites W2104095591 @default.
- W2963131402 cites W2108598243 @default.
- W2963131402 cites W2118411250 @default.
- W2963131402 cites W2119872339 @default.
- W2963131402 cites W2121511538 @default.
- W2963131402 cites W2121535648 @default.
- W2963131402 cites W2129308920 @default.
- W2963131402 cites W2132947399 @default.
- W2963131402 cites W2142514727 @default.
- W2963131402 cites W2143163922 @default.
- W2963131402 cites W2143668817 @default.
- W2963131402 cites W2146814781 @default.
- W2963131402 cites W2149400409 @default.
- W2963131402 cites W2151996626 @default.
- W2963131402 cites W2157812230 @default.
- W2963131402 cites W2171740948 @default.
- W2963131402 cites W2183341477 @default.
- W2963131402 cites W2190691619 @default.
- W2963131402 cites W2229412420 @default.
- W2963131402 cites W2274410306 @default.
- W2963131402 cites W2342277278 @default.
- W2963131402 cites W2560722161 @default.
- W2963131402 cites W2612445135 @default.
- W2963131402 cites W2794693922 @default.
- W2963131402 cites W2805658037 @default.
- W2963131402 cites W2949409558 @default.
- W2963131402 cites W2962778872 @default.
- W2963131402 cites W2962931817 @default.
- W2963131402 cites W2963563548 @default.
- W2963131402 cites W2109182788 @default.
- W2963131402 cites W2146583368 @default.
- W2963131402 doi "https://doi.org/10.48550/arxiv.1907.09375" @default.
- W2963131402 hasPublicationYear "2019" @default.
- W2963131402 type Work @default.
- W2963131402 sameAs 2963131402 @default.
- W2963131402 citedByCount "1" @default.
- W2963131402 countsByYear W29631314022020 @default.
- W2963131402 crossrefType "posted-content" @default.
- W2963131402 hasAuthorship W2963131402A5050419964 @default.
- W2963131402 hasAuthorship W2963131402A5082598478 @default.
- W2963131402 hasAuthorship W2963131402A5091044747 @default.
- W2963131402 hasBestOaLocation W29631314021 @default.
- W2963131402 hasConcept C104293457 @default.
- W2963131402 hasConcept C108583219 @default.
- W2963131402 hasConcept C109950114 @default.
- W2963131402 hasConcept C11413529 @default.
- W2963131402 hasConcept C121684516 @default.
- W2963131402 hasConcept C126838900 @default.
- W2963131402 hasConcept C141379421 @default.
- W2963131402 hasConcept C154945302 @default.
- W2963131402 hasConcept C31487907 @default.
- W2963131402 hasConcept C31601959 @default.
- W2963131402 hasConcept C31972630 @default.
- W2963131402 hasConcept C36464697 @default.
- W2963131402 hasConcept C41008148 @default.
- W2963131402 hasConcept C57493831 @default.
- W2963131402 hasConcept C71924100 @default.
- W2963131402 hasConceptScore W2963131402C104293457 @default.
- W2963131402 hasConceptScore W2963131402C108583219 @default.
- W2963131402 hasConceptScore W2963131402C109950114 @default.
- W2963131402 hasConceptScore W2963131402C11413529 @default.
- W2963131402 hasConceptScore W2963131402C121684516 @default.
- W2963131402 hasConceptScore W2963131402C126838900 @default.
- W2963131402 hasConceptScore W2963131402C141379421 @default.
- W2963131402 hasConceptScore W2963131402C154945302 @default.
- W2963131402 hasConceptScore W2963131402C31487907 @default.
- W2963131402 hasConceptScore W2963131402C31601959 @default.
- W2963131402 hasConceptScore W2963131402C31972630 @default.
- W2963131402 hasConceptScore W2963131402C36464697 @default.
- W2963131402 hasConceptScore W2963131402C41008148 @default.
- W2963131402 hasConceptScore W2963131402C57493831 @default.
- W2963131402 hasConceptScore W2963131402C71924100 @default.
- W2963131402 hasLocation W29631314021 @default.