Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963141464> ?p ?o ?g. }
- W2963141464 endingPage "1784" @default.
- W2963141464 startingPage "1770" @default.
- W2963141464 abstract "In this paper we consider the problem of graph-based transductive classification, and we are particularly interested in the directed graph scenario which is a natural form for many real world applications. Different from existing research efforts that either only deal with undirected graphs or circumvent directionality by means of symmetrization, we propose a novel random walk approach on directed graphs using absorbing Markov chains, which can be regarded as maximizing the accumulated expected number of visits from the unlabeled transient states. Our algorithm is simple, easy to implement, and works with large-scale graphs on binary, multiclass, and multi-label prediction problems. Moreover, it is capable of preserving the graph structure even when the input graph is sparse and changes over time, as well as retaining weak signals presented in the directed edges. We present its intimate connections to a number of existing methods, including graph kernels, graph Laplacian based methods, and spanning forest of graphs. Its computational complexity and the generalization error are also studied. Empirically, our algorithm is evaluated on a wide range of applications, where it has shown to perform competitively comparing to a suite of state-of-the-art methods. In particular, our algorithm is shown to work exceptionally well with large sparse directed graphs with e.g., millions of nodes and tens of millions of edges, where it significantly outperforms other state-of-the-art methods. In the dynamic graph setting involving insertion or deletion of nodes and edge-weight changes over time, it also allows efficient online updates that produce the same results as of the batch update counterparts." @default.
- W2963141464 created "2019-07-30" @default.
- W2963141464 creator A5009172382 @default.
- W2963141464 creator A5022387395 @default.
- W2963141464 creator A5033064324 @default.
- W2963141464 creator A5075471645 @default.
- W2963141464 date "2018-07-01" @default.
- W2963141464 modified "2023-10-16" @default.
- W2963141464 title "Transduction on Directed Graphs via Absorbing Random Walks" @default.
- W2963141464 cites W1479807131 @default.
- W2963141464 cites W1479963817 @default.
- W2963141464 cites W1493526108 @default.
- W2963141464 cites W1506342804 @default.
- W2963141464 cites W1569853715 @default.
- W2963141464 cites W1662292321 @default.
- W2963141464 cites W1867323356 @default.
- W2963141464 cites W1981329364 @default.
- W2963141464 cites W1990334093 @default.
- W2963141464 cites W2022937801 @default.
- W2963141464 cites W2038205735 @default.
- W2963141464 cites W2051917325 @default.
- W2963141464 cites W2069992656 @default.
- W2963141464 cites W2076008912 @default.
- W2963141464 cites W2097897435 @default.
- W2963141464 cites W2105295920 @default.
- W2963141464 cites W2111708605 @default.
- W2963141464 cites W2122162561 @default.
- W2963141464 cites W2132831991 @default.
- W2963141464 cites W2145305441 @default.
- W2963141464 cites W2148588751 @default.
- W2963141464 cites W2150769593 @default.
- W2963141464 cites W2162630660 @default.
- W2963141464 cites W2165922980 @default.
- W2963141464 cites W2168190036 @default.
- W2963141464 cites W2169847772 @default.
- W2963141464 cites W2169931542 @default.
- W2963141464 cites W2171653064 @default.
- W2963141464 cites W3023646171 @default.
- W2963141464 cites W3151142710 @default.
- W2963141464 cites W66588809 @default.
- W2963141464 doi "https://doi.org/10.1109/tpami.2017.2730871" @default.
- W2963141464 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28809671" @default.
- W2963141464 hasPublicationYear "2018" @default.
- W2963141464 type Work @default.
- W2963141464 sameAs 2963141464 @default.
- W2963141464 citedByCount "12" @default.
- W2963141464 countsByYear W29631414642019 @default.
- W2963141464 countsByYear W29631414642020 @default.
- W2963141464 countsByYear W29631414642021 @default.
- W2963141464 countsByYear W29631414642022 @default.
- W2963141464 crossrefType "journal-article" @default.
- W2963141464 hasAuthorship W2963141464A5009172382 @default.
- W2963141464 hasAuthorship W2963141464A5022387395 @default.
- W2963141464 hasAuthorship W2963141464A5033064324 @default.
- W2963141464 hasAuthorship W2963141464A5075471645 @default.
- W2963141464 hasConcept C105795698 @default.
- W2963141464 hasConcept C11413529 @default.
- W2963141464 hasConcept C119857082 @default.
- W2963141464 hasConcept C121194460 @default.
- W2963141464 hasConcept C132525143 @default.
- W2963141464 hasConcept C146380142 @default.
- W2963141464 hasConcept C198414033 @default.
- W2963141464 hasConcept C203776342 @default.
- W2963141464 hasConcept C22149727 @default.
- W2963141464 hasConcept C33923547 @default.
- W2963141464 hasConcept C41008148 @default.
- W2963141464 hasConcept C80444323 @default.
- W2963141464 hasConcept C98763669 @default.
- W2963141464 hasConceptScore W2963141464C105795698 @default.
- W2963141464 hasConceptScore W2963141464C11413529 @default.
- W2963141464 hasConceptScore W2963141464C119857082 @default.
- W2963141464 hasConceptScore W2963141464C121194460 @default.
- W2963141464 hasConceptScore W2963141464C132525143 @default.
- W2963141464 hasConceptScore W2963141464C146380142 @default.
- W2963141464 hasConceptScore W2963141464C198414033 @default.
- W2963141464 hasConceptScore W2963141464C203776342 @default.
- W2963141464 hasConceptScore W2963141464C22149727 @default.
- W2963141464 hasConceptScore W2963141464C33923547 @default.
- W2963141464 hasConceptScore W2963141464C41008148 @default.
- W2963141464 hasConceptScore W2963141464C80444323 @default.
- W2963141464 hasConceptScore W2963141464C98763669 @default.
- W2963141464 hasIssue "7" @default.
- W2963141464 hasLocation W29631414641 @default.
- W2963141464 hasLocation W29631414642 @default.
- W2963141464 hasOpenAccess W2963141464 @default.
- W2963141464 hasPrimaryLocation W29631414641 @default.
- W2963141464 hasRelatedWork W1492787298 @default.
- W2963141464 hasRelatedWork W204018314 @default.
- W2963141464 hasRelatedWork W2081423892 @default.
- W2963141464 hasRelatedWork W2094124170 @default.
- W2963141464 hasRelatedWork W2389529561 @default.
- W2963141464 hasRelatedWork W3022222974 @default.
- W2963141464 hasRelatedWork W369329933 @default.
- W2963141464 hasRelatedWork W4210836535 @default.
- W2963141464 hasRelatedWork W4294662452 @default.
- W2963141464 hasRelatedWork W4302310889 @default.
- W2963141464 hasVolume "40" @default.
- W2963141464 isParatext "false" @default.