Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963161755> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2963161755 endingPage "852" @default.
- W2963161755 startingPage "815" @default.
- W2963161755 abstract "For a topological dynamical system $$(X,T)$$ we define a uniform generator as a finite measurable partition such that the symmetric cylinder sets in the generated process shrink in diameter uniformly to zero. The problem of existence and optimal cardinality of uniform generators has lead us to new challenges in the theory of symbolic extensions. At the beginning we show that uniform generators can be identified with so-called symbolic extensions with an embedding, i.e., symbolic extensions admitting an equivariant measurable selector from preimages. From here we focus on such extensions and we strive to characterize the collection of the corresponding extension entropy functions on invariant measures. For aperiodic zero-dimensional systems we show that this collection coincides with that of extension entropy functions in arbitrary symbolic extensions, which, by the general theory of symbolic extensions, is known to coincide with the collection of all affine superenvelopes of the entropy structure of the system. In particular, we recover, after Burguet (Monatsh Math 184:21–49, 2017), that an aperiodic zero-dimensional system is asymptotically h-expansive if and only if it admits an isomorphic symbolic extension. Next we pass to systems with periodic points, and we introduce the notion of a period tail structure, which captures the local growth rate of periodic orbits. Finally, we succeed in precisely identifying the wanted collection of extension entropy functions in symbolic extensions with an embedding: these are all the affine superenvelopes of the usual entropy structure which lie above certain threshold function determined by the period tail structure. This characterization allows us, among other things, to give estimates (and in examples to compute precisely) of the optimal cardinality of a uniform generator. As a byproduct, we prove a theorem saying that every zero-dimensional system admits an aperiodic zero-dimensional extension which is isomorphic on aperiodic measures and otherwise principal (periodic measures lift to measures of entropy zero)." @default.
- W2963161755 created "2019-07-30" @default.
- W2963161755 creator A5020797301 @default.
- W2963161755 creator A5050440646 @default.
- W2963161755 date "2018-06-15" @default.
- W2963161755 modified "2023-09-25" @default.
- W2963161755 title "Uniform Generators, Symbolic Extensions with an Embedding, and Structure of Periodic Orbits" @default.
- W2963161755 cites W1531679840 @default.
- W2963161755 cites W2070509948 @default.
- W2963161755 cites W2078794687 @default.
- W2963161755 cites W2085735758 @default.
- W2963161755 cites W2091931041 @default.
- W2963161755 cites W2117263186 @default.
- W2963161755 cites W2156559279 @default.
- W2963161755 cites W2165253422 @default.
- W2963161755 cites W2329578810 @default.
- W2963161755 cites W2333826237 @default.
- W2963161755 cites W2963286009 @default.
- W2963161755 cites W3191274338 @default.
- W2963161755 cites W650719733 @default.
- W2963161755 cites W848544808 @default.
- W2963161755 doi "https://doi.org/10.1007/s10884-018-9674-y" @default.
- W2963161755 hasPublicationYear "2018" @default.
- W2963161755 type Work @default.
- W2963161755 sameAs 2963161755 @default.
- W2963161755 citedByCount "8" @default.
- W2963161755 countsByYear W29631617552019 @default.
- W2963161755 countsByYear W29631617552020 @default.
- W2963161755 countsByYear W29631617552021 @default.
- W2963161755 countsByYear W29631617552022 @default.
- W2963161755 countsByYear W29631617552023 @default.
- W2963161755 crossrefType "journal-article" @default.
- W2963161755 hasAuthorship W2963161755A5020797301 @default.
- W2963161755 hasAuthorship W2963161755A5050440646 @default.
- W2963161755 hasBestOaLocation W29631617553 @default.
- W2963161755 hasConcept C118615104 @default.
- W2963161755 hasConcept C121332964 @default.
- W2963161755 hasConcept C154945302 @default.
- W2963161755 hasConcept C16101541 @default.
- W2963161755 hasConcept C171036898 @default.
- W2963161755 hasConcept C202444582 @default.
- W2963161755 hasConcept C2780350623 @default.
- W2963161755 hasConcept C33923547 @default.
- W2963161755 hasConcept C41008148 @default.
- W2963161755 hasConcept C41608201 @default.
- W2963161755 hasConcept C62520636 @default.
- W2963161755 hasConcept C79379906 @default.
- W2963161755 hasConceptScore W2963161755C118615104 @default.
- W2963161755 hasConceptScore W2963161755C121332964 @default.
- W2963161755 hasConceptScore W2963161755C154945302 @default.
- W2963161755 hasConceptScore W2963161755C16101541 @default.
- W2963161755 hasConceptScore W2963161755C171036898 @default.
- W2963161755 hasConceptScore W2963161755C202444582 @default.
- W2963161755 hasConceptScore W2963161755C2780350623 @default.
- W2963161755 hasConceptScore W2963161755C33923547 @default.
- W2963161755 hasConceptScore W2963161755C41008148 @default.
- W2963161755 hasConceptScore W2963161755C41608201 @default.
- W2963161755 hasConceptScore W2963161755C62520636 @default.
- W2963161755 hasConceptScore W2963161755C79379906 @default.
- W2963161755 hasIssue "2" @default.
- W2963161755 hasLocation W29631617551 @default.
- W2963161755 hasLocation W29631617552 @default.
- W2963161755 hasLocation W29631617553 @default.
- W2963161755 hasOpenAccess W2963161755 @default.
- W2963161755 hasPrimaryLocation W29631617551 @default.
- W2963161755 hasRelatedWork W1981814405 @default.
- W2963161755 hasRelatedWork W1995849923 @default.
- W2963161755 hasRelatedWork W2035991160 @default.
- W2963161755 hasRelatedWork W2063132333 @default.
- W2963161755 hasRelatedWork W2136722017 @default.
- W2963161755 hasRelatedWork W2766222296 @default.
- W2963161755 hasRelatedWork W2788206731 @default.
- W2963161755 hasRelatedWork W2963854314 @default.
- W2963161755 hasRelatedWork W2964134901 @default.
- W2963161755 hasRelatedWork W4317357951 @default.
- W2963161755 hasVolume "31" @default.
- W2963161755 isParatext "false" @default.
- W2963161755 isRetracted "false" @default.
- W2963161755 magId "2963161755" @default.
- W2963161755 workType "article" @default.