Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963173821> ?p ?o ?g. }
- W2963173821 abstract "Node-link diagrams are widely used to facilitate network explorations. However, when using a graph drawing technique to visualize networks, users often need to tune different algorithm-specific parameters iteratively by comparing the corresponding drawing results in order to achieve a desired visual effect. This trial and error process is often tedious and time-consuming, especially for non-expert users. Inspired by the powerful data modelling and prediction capabilities of deep learning techniques, we explore the possibility of applying deep learning techniques to graph drawing. Specifically, we propose using a graph-LSTM-based approach to directly map network structures to graph drawings. Given a set of layout examples as the training dataset, we train the proposed graph-LSTM-based model to capture their layout characteristics. Then, the trained model is used to generate graph drawings in a similar style for new networks. We evaluated the proposed approach on two special types of layouts (i.e., grid layouts and star layouts) and two general types of layouts (i.e., ForceAtlas2 and PivotMDS) in both qualitative and quantitative ways. The results provide support for the effectiveness of our approach. We also conducted a time cost assessment on the drawings of small graphs with 20 to 50 nodes. We further report the lessons we learned and discuss the limitations and future work." @default.
- W2963173821 created "2019-07-30" @default.
- W2963173821 creator A5005039651 @default.
- W2963173821 creator A5005458050 @default.
- W2963173821 creator A5026827627 @default.
- W2963173821 creator A5066102428 @default.
- W2963173821 creator A5086690079 @default.
- W2963173821 creator A5091466289 @default.
- W2963173821 date "2019-07-17" @default.
- W2963173821 modified "2023-10-01" @default.
- W2963173821 title "DeepDrawing: A Deep Learning Approach to Graph Drawing" @default.
- W2963173821 cites W1020953626 @default.
- W2963173821 cites W1477859139 @default.
- W2963173821 cites W1479963486 @default.
- W2963173821 cites W1495967075 @default.
- W2963173821 cites W1504716054 @default.
- W2963173821 cites W1522301498 @default.
- W2963173821 cites W1564330171 @default.
- W2963173821 cites W1688966418 @default.
- W2963173821 cites W1815076433 @default.
- W2963173821 cites W1912392752 @default.
- W2963173821 cites W1931404780 @default.
- W2963173821 cites W1991701776 @default.
- W2963173821 cites W1992709202 @default.
- W2963173821 cites W1994022095 @default.
- W2963173821 cites W2017952530 @default.
- W2963173821 cites W2019912818 @default.
- W2963173821 cites W2023655578 @default.
- W2963173821 cites W2026729066 @default.
- W2963173821 cites W2028695285 @default.
- W2963173821 cites W2040581009 @default.
- W2963173821 cites W2041783407 @default.
- W2963173821 cites W2049335983 @default.
- W2963173821 cites W2060181055 @default.
- W2963173821 cites W2064675550 @default.
- W2963173821 cites W2075220720 @default.
- W2963173821 cites W2079789924 @default.
- W2963173821 cites W2082388593 @default.
- W2963173821 cites W2099520755 @default.
- W2963173821 cites W2102664288 @default.
- W2963173821 cites W2103042929 @default.
- W2963173821 cites W2104246439 @default.
- W2963173821 cites W2107878631 @default.
- W2963173821 cites W2107885267 @default.
- W2963173821 cites W2136848157 @default.
- W2963173821 cites W2147468287 @default.
- W2963173821 cites W2158453355 @default.
- W2963173821 cites W2167482691 @default.
- W2963173821 cites W2171381161 @default.
- W2963173821 cites W2244807774 @default.
- W2963173821 cites W2393319904 @default.
- W2963173821 cites W2519887557 @default.
- W2963173821 cites W2558460151 @default.
- W2963173821 cites W2594765389 @default.
- W2963173821 cites W2612364175 @default.
- W2963173821 cites W2624431344 @default.
- W2963173821 cites W2732947513 @default.
- W2963173821 cites W2751731070 @default.
- W2963173821 cites W2753739056 @default.
- W2963173821 cites W2788962621 @default.
- W2963173821 cites W2891571448 @default.
- W2963173821 cites W2892118767 @default.
- W2963173821 cites W2905224888 @default.
- W2963173821 cites W2906351695 @default.
- W2963173821 cites W2910705748 @default.
- W2963173821 cites W2917613803 @default.
- W2963173821 cites W2919115771 @default.
- W2963173821 cites W2952564229 @default.
- W2963173821 cites W2952574282 @default.
- W2963173821 cites W2962756421 @default.
- W2963173821 cites W2962767366 @default.
- W2963173821 cites W2963214037 @default.
- W2963173821 cites W2963374347 @default.
- W2963173821 cites W2963984147 @default.
- W2963173821 cites W2964113829 @default.
- W2963173821 cites W2964145825 @default.
- W2963173821 cites W2964311892 @default.
- W2963173821 cites W2964321699 @default.
- W2963173821 cites W3022981850 @default.
- W2963173821 cites W3104097132 @default.
- W2963173821 cites W33507944 @default.
- W2963173821 cites W38619841 @default.
- W2963173821 cites W58821284 @default.
- W2963173821 cites W634834491 @default.
- W2963173821 cites W637153065 @default.
- W2963173821 cites W170199606 @default.
- W2963173821 doi "https://doi.org/10.48550/arxiv.1907.11040" @default.
- W2963173821 hasPublicationYear "2019" @default.
- W2963173821 type Work @default.
- W2963173821 sameAs 2963173821 @default.
- W2963173821 citedByCount "0" @default.
- W2963173821 crossrefType "posted-content" @default.
- W2963173821 hasAuthorship W2963173821A5005039651 @default.
- W2963173821 hasAuthorship W2963173821A5005458050 @default.
- W2963173821 hasAuthorship W2963173821A5026827627 @default.
- W2963173821 hasAuthorship W2963173821A5066102428 @default.
- W2963173821 hasAuthorship W2963173821A5086690079 @default.
- W2963173821 hasAuthorship W2963173821A5091466289 @default.
- W2963173821 hasBestOaLocation W29631738211 @default.
- W2963173821 hasConcept C108583219 @default.