Matches in SemOpenAlex for { <https://semopenalex.org/work/W2963192882> ?p ?o ?g. }
- W2963192882 abstract "Magnetic resonance imaging (MRI) enables 3-D imaging of anatomical structures. However, the acquisition of MR volumes with high spatial resolution leads to long scan times. To this end, we propose volumetric super-resolution forests (VSRF) to enhance MRI resolution retrospectively. Our method learns a locally linear mapping between low-resolution and high-resolution volumetric image patches by employing random forest regression. We customize features suitable for volumetric MRI to train the random forest and propose a median tree ensemble for robust regression. VSRF out-performs state-of-the-art example-based super-resolution in terms of image quality and efficiency for model training and inference on different MRI datasets. It is also superior to unsupervised methods with just a handful or even a single volume to assemble training data." @default.
- W2963192882 created "2019-07-30" @default.
- W2963192882 creator A5020211325 @default.
- W2963192882 creator A5025681380 @default.
- W2963192882 creator A5037861003 @default.
- W2963192882 creator A5051799245 @default.
- W2963192882 creator A5071978262 @default.
- W2963192882 creator A5079094514 @default.
- W2963192882 date "2018-10-01" @default.
- W2963192882 modified "2023-09-27" @default.
- W2963192882 title "Learning from a Handful Volumes: MRI Resolution Enhancement with Volumetric Super-Resolution Forests" @default.
- W2963192882 cites W113778320 @default.
- W2963192882 cites W1502698477 @default.
- W2963192882 cites W1791560514 @default.
- W2963192882 cites W1950594372 @default.
- W2963192882 cites W1976416062 @default.
- W2963192882 cites W1983060851 @default.
- W2963192882 cites W2003863798 @default.
- W2963192882 cites W2027798120 @default.
- W2963192882 cites W2087484193 @default.
- W2963192882 cites W2129587342 @default.
- W2963192882 cites W2133665775 @default.
- W2963192882 cites W2140854449 @default.
- W2963192882 cites W2146299228 @default.
- W2963192882 cites W2150081556 @default.
- W2963192882 cites W2157466038 @default.
- W2963192882 cites W2160065436 @default.
- W2963192882 cites W2242218935 @default.
- W2963192882 cites W2288980073 @default.
- W2963192882 cites W2522924304 @default.
- W2963192882 cites W2523912646 @default.
- W2963192882 cites W2534320940 @default.
- W2963192882 cites W2587341032 @default.
- W2963192882 cites W2610571781 @default.
- W2963192882 cites W2709402577 @default.
- W2963192882 cites W2755453501 @default.
- W2963192882 cites W2785438975 @default.
- W2963192882 cites W2963372104 @default.
- W2963192882 cites W3098848838 @default.
- W2963192882 cites W3105643535 @default.
- W2963192882 cites W54257720 @default.
- W2963192882 cites W935139217 @default.
- W2963192882 doi "https://doi.org/10.1109/icip.2018.8451320" @default.
- W2963192882 hasPublicationYear "2018" @default.
- W2963192882 type Work @default.
- W2963192882 sameAs 2963192882 @default.
- W2963192882 citedByCount "0" @default.
- W2963192882 crossrefType "proceedings-article" @default.
- W2963192882 hasAuthorship W2963192882A5020211325 @default.
- W2963192882 hasAuthorship W2963192882A5025681380 @default.
- W2963192882 hasAuthorship W2963192882A5037861003 @default.
- W2963192882 hasAuthorship W2963192882A5051799245 @default.
- W2963192882 hasAuthorship W2963192882A5071978262 @default.
- W2963192882 hasAuthorship W2963192882A5079094514 @default.
- W2963192882 hasBestOaLocation W29631928822 @default.
- W2963192882 hasConcept C105795698 @default.
- W2963192882 hasConcept C113174947 @default.
- W2963192882 hasConcept C121332964 @default.
- W2963192882 hasConcept C126838900 @default.
- W2963192882 hasConcept C134306372 @default.
- W2963192882 hasConcept C138268822 @default.
- W2963192882 hasConcept C143409427 @default.
- W2963192882 hasConcept C153180895 @default.
- W2963192882 hasConcept C154945302 @default.
- W2963192882 hasConcept C157787499 @default.
- W2963192882 hasConcept C169258074 @default.
- W2963192882 hasConcept C205372480 @default.
- W2963192882 hasConcept C20556612 @default.
- W2963192882 hasConcept C31972630 @default.
- W2963192882 hasConcept C33923547 @default.
- W2963192882 hasConcept C41008148 @default.
- W2963192882 hasConcept C62520636 @default.
- W2963192882 hasConcept C71924100 @default.
- W2963192882 hasConcept C83546350 @default.
- W2963192882 hasConceptScore W2963192882C105795698 @default.
- W2963192882 hasConceptScore W2963192882C113174947 @default.
- W2963192882 hasConceptScore W2963192882C121332964 @default.
- W2963192882 hasConceptScore W2963192882C126838900 @default.
- W2963192882 hasConceptScore W2963192882C134306372 @default.
- W2963192882 hasConceptScore W2963192882C138268822 @default.
- W2963192882 hasConceptScore W2963192882C143409427 @default.
- W2963192882 hasConceptScore W2963192882C153180895 @default.
- W2963192882 hasConceptScore W2963192882C154945302 @default.
- W2963192882 hasConceptScore W2963192882C157787499 @default.
- W2963192882 hasConceptScore W2963192882C169258074 @default.
- W2963192882 hasConceptScore W2963192882C205372480 @default.
- W2963192882 hasConceptScore W2963192882C20556612 @default.
- W2963192882 hasConceptScore W2963192882C31972630 @default.
- W2963192882 hasConceptScore W2963192882C33923547 @default.
- W2963192882 hasConceptScore W2963192882C41008148 @default.
- W2963192882 hasConceptScore W2963192882C62520636 @default.
- W2963192882 hasConceptScore W2963192882C71924100 @default.
- W2963192882 hasConceptScore W2963192882C83546350 @default.
- W2963192882 hasLocation W29631928821 @default.
- W2963192882 hasLocation W29631928822 @default.
- W2963192882 hasOpenAccess W2963192882 @default.
- W2963192882 hasPrimaryLocation W29631928821 @default.
- W2963192882 hasRelatedWork W2078919253 @default.
- W2963192882 hasRelatedWork W2101769619 @default.
- W2963192882 hasRelatedWork W2112889201 @default.